DR

David E. Rival

13 records found

A novel algorithm to detect coherent structures with sparse Lagrangian particle tracking data, using Voronoi tessellation and techniques from spectral graph theory, is tested. Neighbouring tracer particles are naturally identified through the Voronoi tessellation of the tracers' ...
Abstract: A novel method for three-dimensional particle tracking velocimetry (PTV) is proposed that enables flow measurements in large volumes [V= O(10 m3)] using a single camera. Flow is seeded with centimeter-sized soap bubbles, when combined with suitable illuminati ...

On the concept of energized mass

A robust framework for low-order force modeling in flow past accelerating bodies

The concept of added (virtual) mass is applied to a vast array of unsteady fluid-flow problems; however, its origins in potential-flow theory may limit its usefulness in separated flows. A robust framework for modeling instantaneous fluid forces is proposed, named Energized Mass. ...
Abstract: In this study, vortical structures are detected on sparse Shake-The-Box data sets using the Coherent-Structure Colouring (CSC) algorithm. The performance of this Lagrangian approach is assessed by comparing the CSC-coloured tracks with the baseline vorticity field. The ...
The Energized-Mass approach [1] offers a simple and robust framework for modeling forces in separated flow, requiring only kinematics, Reynolds-number, and geometry-based inputs. To this end, an energized-mass-based force model has been developed to describe the force response of ...
It remains unclear to what extent inviscid added-mass theory accounts for the forces exerted on an accelerating body subjected to separated flow. In this study, reactant forces and velocity-field data are systematically acquired using experimental measurements and simulations of ...
A kinetic-energy-based, semi-empirical model for unsteady force estimation has been de-veloped, inspired by the concept of the Darwinian drift volume. The limitations of potential flow added mass and vortex impulse approaches were explored, and compared to experimental results. A ...
Three model motions were developed to replicate the aerodynamic response of a transverse gust. These motions included a pure plunging and two three-degree-of-freedom motions that approximated the angle-of-attack distribution produced by the gust. Using inviscid models and viscous ...
A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comp ...
In a large variety of fluid-dynamic problems, it is often impossible to directly measure the instantaneous aerodynamic or hydrodynamic forces on a moving body. Examples include studies of propulsion in nature, either with mechanical models or living animals, wings, and blades sub ...
A perching bird is able to rapidly decelerate while maintaining lift and control, but the underlying aerodynamic mechanism is poorly understood. In this work we perform a study on a simultaneously decelerating and pitching aerofoil section to increase our understanding of the uns ...
A perching bird is able to rapidly decelerate at a high angle of attack while maintaining lift and control. However, the underlying aerodynamic mechanism is poorly understood. We perform a study on a simultaneously decelerating and pitching airfoil section as a simple perching mo ...
If a moving body were made to vanish within a fluid, its boundary-layer vorticity would be released into the fluid at all locations simultaneously, a phenomenon we call global vorticity shedding. We approximate this process by studying the related problem of rapid vorticity trans ...