PT

Peter Troch

29 records found

Authored

In this paper, a Reynolds-averaged Navier-Stokes (RANS) equations solver, interFoam of OpenFOAM®, is validated for wave interactions with a dike, including a promenade and vertical wall, on a shallow foreshore. Such a coastal defence system is comprised of both an impermeable ...

In this work, internal wave generation techniques are developed in an open source non-hydrostatic wave model (SimulatingWAves till SHore, SWASH) for accurate generation of regular and irregular long-crested waves. Two different internal wave generation techniques are examined: a ...
Growing energy demand has increased interest in marine renewable energy resources, i.e. wave energy which is harvested through Wave Energy Converter (WEC) Arrays.
However, the wave energy industry is currently at a significant juncture in its development, facing a number of c ...

Estimation of wave overtopping over the crest of coastal structures is crucial to design effective and cost efficient countermeasures against storms. Semi-empirical formulas are often used for wave overtopping assessment, but they are not always applicable for complex structur ...

Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and ...

The importance of hydraulic groundwater theory in catchment hydrology

The legacy of Wilfried Brutsaert and Jean-Yves Parlange

Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of m ...

Because of global warming, the hydrologic behavior of the Rhine basin is expected to shift from a combined snowmelt-and rainfall-driven regime to a more rainfall-dominated regime. Previous impact assessments have indicated that this leads, on average, to increasing streamflow by ...

The hydrological regime of the Rhine basin is expected to shift from a combined snowmelt-rainfall regime to a more rainfall-dominated regime because of climate change, leading to more extreme flood peaks and low flows. Land use changes may reinforce the effects of this shift t ...

Understanding the long-term (interannual-decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning ...

Hillslopes have complex three-dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslope ...

This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, ...

Recently, D'Odorico and Fagherazzi (2003) proposed "A probabilistic model of rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39, 2003). Their model describes the long-term evolution of colluvial deposits through a probabilistic soil mass balance at a point. ...

We investigate the role of interannual climate variability on spatial soil moisture variability dynamics for a field site in Louvain-la-Neuve, Belgium. Observations were made during 3 years under intermediate (1999), wet (2000), and extremely dry conditions (2003). Soil moistu ...

Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow land-slides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investig ...

Characterization of the space-time variability of soil moisture is important for land surface and climate studies. Here we develop an analytical model to investigate how, at the dry-end of the soil moisture range, the main characteristics of the soil moisture field (spatial me ...

Root zone soil moisture is a key variable in many land surface hydrology models. Often, however, there is a mismatch in the spatial scales at which models simulate soil moisture and at which soil moisture is observed. This complicates model validation. The increased availability ...
Experiments have shown that plants can compensate for water stress in the upper, more densely rooted, soil layers by increasing the water uptake from deeper layers. By adapting root water uptake to water availability, plants are able to extend the period of unstressed transpirati ...
[1] The matter of the efficient and parsimonious parameterization of hillslope subsurface flow remains an important issue in catchment hydrological studies (Brutsaert, 1995). Insights into the influence of the shape and hydraulic characteristics of hillslopes is required to furth ...

It has recently been suggested that the bimodality in warm season soil moisture observations in Illinois is evidence of a soil moisture-precipitation feedback. Other studies however provide little evidence for a strong feedback in this region. Here we show that seasonality in ...

Recently, Troch et al. [10] introduced the hillslope-storage Boussinesq (hsB) equation to describe subsurface flow and saturation along complex hillslopes. They demonstrated that numerical solutions of the hsB equation account explicitly for plan shape of the hillslope, by introd ...