Circular Image

S.J.J. Brouns

62 records found

Jumbo phages protect their genomes from DNA-sensing bacterial defense systems by enclosing them within vesicles and nucleus-like compartments. Very little is known about defense systems specialized to counter these phages. Here, we show that AVAST Type 5 (Avs5) systems, part of t ...
Bacteria encode diverse anti-phage systems, such as CRISPR-Cas and restriction modification (RM), which limit infection by targeting phage DNA. We identified a DNA modification in phages, i.e., 5-arabinosyl-hydroxy-cytosine (5ara-hC), which adds arabinose to cytosines via a hydro ...
The evolutionary arms race between bacteria and bacteriophages drives rapid evolution of bacterial defense mechanisms with scattered distribution across genomes. We hypothesized that this variability in bacterial defense systems leads to equally variable counter-defense repertoir ...
Mass spectrometry-based proteomics focuses on identifying the peptide that generates a tandem mass spectrum. Traditional methods rely on protein databases but are often limited or inapplicable in certain contexts. De novo peptide sequencing, which assigns peptide sequences to spe ...
Cystic fibrosis is a genetic disorder that affects mucus clearance, particularly of the lungs. As a result, cystic fibrosis patients often experience infections from bacteria, which contribute to the disease progression. Pseudomonas aeruginosa is one of the most common opportunis ...
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto ...
The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream ...
With the discovery of CRISPR-controlled proteases, CRISPR–Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We ...

CasPEDIA Database

A functional classification system for class 2 CRISPR-Cas enzymes

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and ag ...
Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of P ...
Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that pha ...
Serratia sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR-Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage-host interaction with Serratia sp. ATCC 39006, we isolated ...
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. Ho ...
Bacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are labori ...
In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phag ...
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications ...
The Klebsiella jumbo myophage ϕKp24 displays an unusually complex arrangement of tail fibers interacting with a host cell. In this study, we combine cryo-electron microscopy methods, protein structure prediction methods, molecular simulations, microbiological and machine learning ...
While CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherich ...
The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease ...
CRISPR–Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR–Cas systems sense and cleave viral DNA, type III and type VI CRISPR–Cas systems sense RNA tha ...