Sv
S.P.B. van Beljouw
info
Please Note
<p>This page displays the records of the person named above and is not linked to a unique person identifier. This record may need to be merged to a profile.</p>
9 records found
1
Novel phage defense systems featuring diverse enzymatic activities are continually being discovered. Among these, defense systems employing proteolytic enzymes have been identified, revealing a previously unrecognized enzymatic activity in phage defense. These protease-associated
...
Mass spectrometry-based proteomics focuses on identifying the peptide that generates a tandem mass spectrum. Traditional methods rely on protein databases but are often limited or inapplicable in certain contexts. De novo peptide sequencing, which assigns peptide sequences to spe
...
The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream
...
This dissertation provides an experimental and conceptual characterization of Craspase, a CRISPR-controlled protease. The array of functionalities inherent to Craspase — including precise protein cleavage, guided RNA recognition, and self-regulatory capabilities — highlights the
...
With the discovery of CRISPR-controlled proteases, CRISPR–Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We
...
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. Ho
...
CRISPR–Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR–Cas systems sense and cleave viral DNA, type III and type VI CRISPR–Cas systems sense RNA tha
...
The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease
...
Type III CRISPR-Cas immunity is widespread in prokaryotes and is generally mediated by multisubunit effector complexes. These complexes recognize complementary viral transcripts and can activate ancillary immune proteins. Here, we describe a type III-E effector from Candidatus “S
...