A 6-to-8GHz 0.17mW/Qubit Cryo-CMOS Receiver for Multiple Spin Qubit Readout in 40nm CMOS Technology

Conference Paper (2021)
Authors

B. Prabowo (QCD/Sebastiano Lab, TU Delft - QuTech Advanced Research Centre)

Guoji Zheng (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab)

M. Mehrpoo (Broadcom Netherlands B.V., TU Delft - Electronics)

B Patra (TU Delft - QuTech Advanced Research Centre, QCD/Sebastiano Lab)

P. Harvey-Collard (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab)

Jurgen Dijkema (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab)

Amir Sammak (TNO)

G. Scappucci (TU Delft - QCD/Scappucci Lab, TU Delft - QuTech Advanced Research Centre)

Edoardo Charbon (TU Delft - Quantum Circuit Architectures and Technology, EPFL Neuchâtel, TU Delft - QuTech Advanced Research Centre, QCD/Sebastiano Lab)

Fabio Sebastiano (TU Delft - Quantum Circuit Architectures and Technology, TU Delft - QuTech Advanced Research Centre)

Lieven M.K. Vandersypen (TU Delft - QN/Vandersypen Lab, TU Delft - QuTech Advanced Research Centre)

Masoud Babaie (TU Delft - QuTech Advanced Research Centre, TU Delft - Electronics)

Affiliation
QCD/Sebastiano Lab
Copyright
© 2021 B. Prabowo, G. Zheng, M. Mehrpoo, B Patra, P. Harvey-Collard, J.J. Dijkema, Amir Sammak, G. Scappucci, E. Charbon-Iwasaki-Charbon, F. Sebastiano, L.M.K. Vandersypen, M. Babaie
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 B. Prabowo, G. Zheng, M. Mehrpoo, B Patra, P. Harvey-Collard, J.J. Dijkema, Amir Sammak, G. Scappucci, E. Charbon-Iwasaki-Charbon, F. Sebastiano, L.M.K. Vandersypen, M. Babaie
Affiliation
QCD/Sebastiano Lab
Volume number
64
Pages (from-to)
212-214
ISBN (electronic)
9781728195490
DOI:
https://doi.org/10.1109/ISSCC42613.2021.9365848
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Quantum computers (QC) promise to solve certain computational problems exponentially faster than a classical computer due to the superposition and entanglement properties of quantum bits (qubits). Among several qubit technologies, spin qubits are a promising candidate for large-scale QC, since (1) they have a small footprint allowing them to be densely integrated and (2) they can operate at relatively high temperatures (\gt1\mathrm{K}) [1], potentially reducing system cost and complexity.

Files

09365848_2taverne.pdf
(pdf | 0.554 Mb)
- Embargo expired in 03-09-2021
License info not available