Circular Image

A. Gangoli Rao

66 records found

In this study, the macroscopic properties of kerosene-H2 blended flames are investigated in a multi-phase, multi-fuel combustor, focusing on the effects of increasing H2 blending fractions. The non-reacting flow field of the swirl-stabilized combustor is cha ...
The jet-in-coflow is a two-stream configuration having engineering applications in combustors and gas turbine engine exhausts. In practical systems, the coflow generates a boundary layer of the outer wall of the jet pipe and may also have a certain level of turbulence. In the cur ...
Introducing H 2 as fuel in gas turbines is a promising step towards decarbonizing the energy sector. However, the future availability of H 2 in large quantities remains uncertain. Consequently, designing fuel flexible (CH ...
The aviation industry and policymakers are advocating Sustainable Aviation Fuels (SAF) as one of the main pillars for making the aviation industry sustainable. However, regulatory frameworks like CORSIA and the EU Renewable Energy Directive often exclude the climate impact from i ...
Liquid hydrogen (LH2) is a promising candidate for zero emission aviation, but its cryogenic properties make the refuelling process fundamentally different from that of conventional jet fuels. Although previous studies have addressed LH2 storage and system i ...
Low emissions and fuel flexibility are two important criteria required for gas turbine combustors to facilitate the energy transition to low-carbon fuels for propulsion and power applications. A jet-stabilized combustor, having both these characteristics, was operated with CH ...
HYLENA will investigate, develop and optimize an innovative, highly efficient integrated hydrogen powered, electrical aircraft propulsion concept for short and medium range. It will achieve significant climate impact reduction by being completely carbon neutral with radical incre ...

Results from the APPU project

The potential of low-threshold hydrogen-powered BLI propulsion

Results from the APPU project, which investigated the concept of an "Auxiliary Power and Propulsion Unit" (APPU) are presented. The APPU is a hydrogen-driven boundary-layer-ingesting engine at the tail end of a passenger aircraft which replaces the conventional APU and contribute ...
The jet-in-hot-coflow is a canonical combustion setup, which has been used in several studies to study Flameless/MILD combustion and auto-ignition of fuels. However, the NOx and CO emission measurements from these combustion setups were not possible due to the entrainm ...
Due to climate change concerns, hydrogen is being considered for future aviation, but its commercial availability is limited, storage is bulky and its combustion with 100% concentration still poses numerous technical challenges. This leads to a certain interest in multi-fuel syst ...
Large eddy simulation (LES) paradigms are employed to analyse the internal flow field of a lean premixed swirl-stabilized combustor with axial air injection at both non-reacting and reacting conditions, for a methane and a methane-hydrogen fuel mixture. The thickened flame combus ...
Boundary-layer instability on a rotating cone induces coherent spiral vortices that are linked to the onset of laminar–turbulent transition. This type of transition is relevant to several aerospace systems with rotating components, e.g., aeroengine nose cones. Because a variety o ...
The power sector accounts for ∼40% of global energy-related CO2 emissions. Its decarbonization by switching to low-carbon renewables is essential for a sustainable future. Existing electrical grids, however, have limited capacity to absorb the variability introduced by ...
Fuselage Boundary-Layer Ingestion (BLI) is a promising example of synergistic design and propulsion-airframe integration to reduce fuel burn. For a BLI configuration, the aero propulsive performance of the aircraft is a result of the complex aerodynamic interaction between the fu ...
Lean-premixed swirl-stabilized combustion is a successful strategy to reduce pollutant emissions. However, these combustion systems are especially prone to thermoacoustic instabilities. The precessing vortex core (PVC) plays a significant role in suppressing or exciting those ins ...
As climate change aggravates, the aviation sector strives to minimize its climate footprint. To this end, international organizations, such as ICAO and ACARE, are promoting mitigation measures including novel technologies, operations, and energy carriers to reduce aircraft emissi ...
The climate impact of aviation is considerably different from that of other transport modes. The turbofan engine’s efficiency can be increased by increasing the Operating Pressure Ratio (OPR), bypass ratio (BPR) and Turbine Inlet Temperature (TIT), thereby reducing CO2 and H2O em ...
The concept of an "Auxiliary Power and Propulsion Unit" (APPU) is introduced, which consists of a Boundarylayer ingesting (BLI) propulsor with an engine mounted at the rear of an passenger aircraft fuselage, replacing the Auxiliary Power Unit (APU) and contributing around 10% of ...
Boundary-layer ingestion (BLI) has been proposed as one of the novel airframe–engine integration technologies to reduce aircraft fuel consumption. The current numerical analysis involves the evaluation of the effect of fuselage design on the power consumption of a boundary-layer ...
The fuel efficiency of turbofan engines has improved significantly, hence reducing aviation's CO2 emissions. However, the increased operating pressure and temperature for fuel efficiency cause adverse effects on NOx emissions. Therefore, a novel engine concept, which can reduce N ...