Circular Image

D.M.J. Peeters

50 records found

This work proposes a methodology for the characterisation of complex pore features in unidirectional composite prepregs, and provides insights into the interaction between fibre architecture and pores. The method showcased allows to compare spatial distributions at a three-dimens ...
The high void content in laser-assisted fiber placement (LAFP)-manufactured thermoplastic (TP) hinders industrial adoption, with tape deconsolidation being a critical yet understudied factor. To address this research gap, this study provides an in-depth investigation into the dec ...
This study investigates a filament-wound tube model incorporating fiber undulation from the filament winding process. The model was analyzed using the finite element method in the linear regime, then compared with the shell model and radial crushing experiment. Results showed tha ...
Understanding the microstructural variability in unidirectional composite prepreg tapes is relevant to investigating mechanisms of tape microstructure formation, their impact on its processability and the mechanical performance of the final composite part. It has been shown that ...
The present study introduces an automated multidisciplinary optimization (MDO) workflow that, for the first time, couples an explicit dynamic bird strike analysis with a post-impact static stress check. This joint problem is solved during preliminary wing sizing by integrating ba ...
In-situ Automated Fiber Placement (AFP) manufacturing of thermoplastic prepreg tapes has the potential to provide a fast and cost-effective manufacturing solution for large composite structures. However, it is prone to several defects, especially gaps and overlaps. One of the pri ...
Double-curved composite structures that are manufactured via automated fiber placement, such as pressure vessels, can take advantage of tow steering to reduce weight. This design freedom comes with the cost of adding internal normal stresses to the tow, possibly leading to wrinkl ...
This work studies the effect of compaction of tapes that have been heated using a laser during automated fibre placement. The deconsolidation has been shown to have a significant effect on the surface roughness, degree of effective intimate contact and void content. This work inv ...
Manufacturing variations in the automated fiber placement (AFP) process are one of the causes of gaps and overlaps. These manufacturing variations can be due to robot inaccuracy, tow lateral movement on the roller, tow width variation or tow compaction. An experimental setup was ...
This work aims to improve the flexural behaviour of unidirectional fibre-reinforced laminates by means of coupling an optimization procedure for quasi-isotropic configurations with the design space opened by dispersed-ply orientations. The design approach consists of finding suit ...
Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufactura ...
Manufacturing variations in the AFP process are one of the causes of gaps and overlaps. These manufacturing variations can be due to robot inaccuracy, tape lateral movement on the roller, tape width variation or tape compaction. These manufacturing variations result in incorrect ...
Most MDO problems currently do not include manufacturing as an optimization domain. Within the H2020 project AGILE 4.0 the intent is to bring manufacturing into the MDO domain using MBSE techniques developed within the project. To demonstrate how manufacturing can be brought into ...
Over the past 25 years, interest in thermoplastic composites in aircraft has steadily increased. Combining winding and laser-assisted tape placement is a promising method to manufacture thermoplastic structures using in-situ consolidation, as shown recently by manufacturing a var ...
Despite their importance in benchmarking numerical simulations, buckling tests still feature compromises between component-level and high-fidelity large-scale tests. For example, compression-induced buckling tests cannot capture the through-thickness or span-wise stress gradients ...
This paper presents the collaborative model-based design of a business jet family. In family design, a trade-off is made between aircraft performance, reducing fuel burn, and commonality, reducing manufacturing costs. The family is designed using Model-Based Systems Engineering ( ...
Carbon fibre-reinforced polymer composites (CFRPs) outperform most structural engineering materials in specific stiffness and/or specific strength, especially in their unidirectional configuration. Unidirectional composites can be found as individual structural elements in cables ...

Buckling test of stiffened panels

Modeling and vibrational correlation testing

Representative stiffened panels are optimized such that multiple buckling modes and failure (using open hole allowables) occur within a range of 10% of the lowest buckling load. This implies the panels cannot be loaded up to the buckling load without risking failure, hence vibrat ...
This work presents a new aeroelastic optimisation framework for the preliminary design of variable stiffness composite wing structures. The framework is constructed by sequentially and iteratively solving two sub-problems: aeroelastic tailoring and lay-up retrieval, using gradien ...
A retrofit analysis on a 90 passengers regional jet aircraft is performed through a multidisciplinary collaborative aircraft design and optimization highlighting the impact on costs and performance. Two different activities are accounted for selecting the best aircraft retrofit s ...