D. van Halem
99 records found
1
Groundwater is one of the major sources for drinking water supply worldwide. Conventional iron removal via aeration-filtration produces about 72,802 t of iron sludge annually in the Netherlands alone. Iron sludge comprises low-density flocs of little to no commercial value. The c
...
Methane removal is an essential step in drinking water production from methane-rich groundwaters. Conventional aeration-based stripping results in significant direct methane emissions, contributing up to one-third of a treatment plant's total carbon footprint. To address this, a
...
To meet the increasing drinking water demand, membrane technologies are used to treat previously unavailable water sources. A byproduct of membrane technologies is the concentrate stream, containing valuable resources in higher concentrations. We studied the recovery of iron from
...
A difficult coexistence
Resolving the iron-induced nitrification delay in groundwater filters
Rapid sand filters (RSF) are an established and widely applied technology for the removal of dissolved iron (Fe2+) and ammonium (NH4+) among other contaminants in groundwater treatment. Most often, biological NH4+oxidation is
...
Slow sand filters (SSFs) are widely used in drinking water production to improve microbial safety and biological stability of water. Full-scale SSFs are maintained by scraping the biomass-rich top layers of sand. The period of downtime required for filter recovery after scraping
...
Electrochemical arsenite oxidation for drinking water treatment
Mechanisms, by-product formation and energy consumption
The mechanisms and by-product formation of electrochemical oxidation (EO) for As(III) oxidation in drinking water treatment using groundwater was investigated. Experiments were carried out using a flowthrough system, with an RuO
2/IrO
2
...
Iron (Fe2+), manganese (Mn2+), and ammonium (NH4+) oxidation processes were studied in three single media and three dual media full-scale rapid sand filters (RSFs) using reactive transport modelling (RTM) in PHREEQC and parameter estima
...
“Candidatus Siderophilus nitratireducens”
A putative nap-dependent nitrate-reducing iron oxidizer within the new order Siderophiliales
Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-oxidizing (NDFO) ba
...
Rapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these
...
Gravity-driven sand filters are the dominant groundwater treatment technology for drinking water production. In the past, physicochemical reactions were often assumed to play the main role in the removal of contaminants, but recent breakthroughs showcase the vital role of microor
...
Organic micropollutants (OMPs) enter the aquatic environment via municipal wastewater treatment plants (WWTPs). As conventional WWTPs have limited capacity for the removal of OMPs, additional processes are required, like ozone - granular activated carbon (GAC) filtration. A speci
...
Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in ground
...
Iron-based adsorbents are commonly used to remove arsenic (As) from water for drinking water purposes. Here, we study the role of biological As(III) oxidation on iron-based adsorbents in filters and its effect on overall As uptake. A lab-scale filter with iron oxide coated sand (
...
Molecular-scale characterization of groundwater treatment sludge from around the world
Implications for potential arsenic recovery
Iron (Fe)-based treatment methods are widely applied to remove carcinogenic arsenic (As) from drinking water, but generate toxic As-laden Fe (oxyhydr)oxide waste that has traditionally been ignored for resource recovery by the water sector. However, the European Commission recent
...
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecti
...
Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve th
...
Natural organic matter (NOM) is present in water matrix that serves as a drinking water source. This study examined the effect of low and high NOM concentrations on inactivation kinetics of a model RNA virus (MS2) and a model DNA virus (PhiX 174) by copper (Cu2+) and/o
...
Slow Sand Filtration is popular in drinking water treatment for the removal of a wide range of contaminants (e.g., particles, organic matter, and microorganisms). The Schmutzdecke in slow sand filters (SSFs) is known to be essential for pathogen removal, however, this layer is al
...
Sequential iron (as Fe2+) oxidation has been found to yield improved arsenic (as As(III)) uptake than the single-step oxidation. The objective of this study was to gain a better understanding of interactions with phosphate (PO43−) and silicate (Si
...
Electrochemical ferrous iron (Fe2+) wastewater treatment is gaining momentum for treating municipal wastewater due to its decreasing costs, environmental friendliness and capacity for removal of a wide range of contaminants. Disinfection by iron electrocoagulation (Fe-
...