QD

Authored

20 records found

This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) designed for 3-D ultrasonic imaging of the carotid artery. This application calls for an array of thousands of ultrasonic transducer elements, far exceeding the number of channels of conv ...
Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Real-time 3D ultrasonic imaging requires a matrix of transducer elements with a number of elements that readily exceeds the number of channels of a conventional imaging system. This paper presents an ASIC, realized in a high-voltage 0.18 μm BCDMOS process, that interfaces a piez ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...
Accurate assessment of carotid artery disease by measuring blood flow, plaque deformation and pulse wave velocity using ultrasound (US) imaging requires 3D information. Additionally, the volume rates should be high enough (> 1 kHz) to capture the full range of these fast transien ...