Circular Image

M. Wiertlewski

26 records found

The suckers on the octopus arm play a pivotal role in the execution of tasks in unstructured environments by providing a means to grip objects as well as perceive the environment through (chemo-)tactile receptors in the suckers. This work presents an octopus-inspired suction cup ...
Abstract: A task as simple as holding a cup between your fingers generates complex motor commands to finely regulate the forces applied by muscles. These fine force adjustments ensure the stability and integrity of the object by preventing it from slipping out of grip during mani ...
Virtual targets on touchscreens (e.g., icons, slide bars, etc.) are notoriously challenging to reach without vision. The performance of the interaction can fortunately be improved by surface haptics, using friction modulation. However, most methods use position-dependent renderin ...

Attracting Fingers with Waves

Potential Fields Using Active Lateral Forces Enhance Touch Interactions

Touchscreens and touchpads offer intuitive interfaces but provide limited tactile feedback, usually just mechanical vibrations. These devices lack continuous feedback to guide users’ fingers toward specific directions. Recent innovations in surface haptic devices, however, levera ...
To gently grasp objects, robots need to balance generating enough friction yet avoiding too much force that could damage the object. In practice, the force regulation is challenging to implement since it requires knowledge of the friction coefficient, which can vary from object t ...
Pipelines, vital for fluid transport, pose an important yet challenging inspection task, particularly in small, flexible biological systems, that robots have yet to master. In this study, we explored the development of an innovative robot inspired by the ovipositor of parasitic w ...
Abstract: When manipulating objects, humans begin adjusting their grip force to friction within 100 ms of contact. During motor adaptation, subjects become aware of the slipperiness of touched surfaces. Previously, we have demonstrated that humans cannot perceive frictional diffe ...
The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion ...
Minimally invasive endovascular procedures use catheters that are guided through blood vessels to perform interventions, resulting in an inevitable frictional interaction between the catheter and the vessel walls. While this friction enhances stability during the intervention, it ...
The sensation of touching virtual texture and shape can be provided to a touchscreen user by varying the friction force. Despite the saliency of the sensation, this modulated frictional force is purely passive and strictly opposes finger movement. Therefore, it is only possible t ...
Shortly after touching an object, humans can tactually gauge the frictional resistance of a surface. The knowledge of surface friction is paramount to tactile perception and the motor control of grasp. While potent correlations between friction and participants' perceptual respon ...
Transverse vibrations can induce the non-linear compression of a thin film of air to levitate objects, via the squeeze-film effect. This phenomenon is well captured by the Reynolds' lubrication theory; however, the same theory fails to describe this levitation when the fluid is i ...
Humans can effortlessly grasp various objects when the fingers are in direct physical interaction with the object. However, the same actions become complicated when grasping has to be performed via a teleoperated remote robot due to a lack of direct contact and reduced sensory in ...
To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material ...
Wearable vibrotactile actuators are non-intrusive and inexpensive means to provide haptic feedback directly to the user's skin. Complex spatiotemporal stimuli can be achieved by combining multiple of these actuators, using the funneling illusion. This illusion can funnel the sens ...
Tactile sensing can provide access to information about the contact (i.e. slippage, surface feature, friction), which is out of reach of vision but crucial for manipulation. To access this information, a dense measurement of the deformation of soft fingertips is necessary. Recent ...
Human tactile perception and motor control rely on the frictional estimates that stem from the deformation of the skin and slip events. However, it is not clear how exactly these mechanical events relate to the perception of friction. This study aims to quantify how minor lateral ...
When grasping objects, we rely on our sense of touch to adjust our grip and react against external perturbations. Less than 200 ms after an unexpected event, the sensorimotor system is able to process tactile information to deduce the frictional strength of the contact and to rea ...
A surface texture is perceived through both the sound and vibrations produced while being explored by our fingers. Because of their common origin, both modalities have a strong influence on each other, particularly at above 60 Hz for which vibrotactile perception and pitch percep ...

Friction sensing mechanisms for perception and motor control

Passive touch without sliding may not provide perceivable frictional information

Perception of the frictional properties of a surface contributes to the multidimensional experience of exploring various materials; we slide our fingers over a surface to feel it. In contrast, during object manipulation, we grip objects without such intended exploratory movements ...