L. Lao
12 records found
1
Authored
OpenQL
A Portable Quantum Programming Framework for Quantum Accelerators
With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving, and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quant ...
Quantum algorithms need to be compiled to respect the constraints imposed by quantum processors, which is known as the mapping problem. The mapping procedure will result in an increase of the number of gates and of the circuit latency, decreasing the algorithm's success rate. ...
Fault-tolerant (FT) computation by using quantum error correction (QEC) is essential for realizing large-scale quantum algorithms. Devices are expected to have enough qubits to demonstrate aspects of fault tolerance in the near future. However, these near-term quantum processo ...
Quantum computers can solve problems that are inefficiently solved by classical computers, such as integer factorization. A fully programmable quantum computer requires a quantum control microarchitecture that connects the quantum software and hardware. Previous research has p ...
Modern computer applications usually consist of a variety of components that often require quite different computational co-processors. Some examples of such co-processors are TPUs, GPUs or FPGAs. A more recent and promising technology that is being investigated is quantum co- ...