MH

M.J.M. Hermans

209 records found

Superelastic metamaterials have attracted significant attention recently, but achieving such functionality remains challenging due to partial superelasticity and premature fracture in additively manufactured components. To address these issues, this study investigates the prematu ...
In the present study, the crystallography aspects of the liquid metal embrittlement (LME) phenomenon are investigated in a bi-metallic bronze-stainless steel structure, produced using wire arc additive manufacturing. Most of the LME cracks were found to be propagated along high-a ...
This study concentrates on the fatigue crack propagation behaviour of a high-strength low-alloy (HSLA) steel and austenitic stainless (AS) steel bi-material part, as obtained by wire arc additive manufacturing (WAAM). Due to partial mixing in the weld pool, the first layer of AS ...
Microstructure features including grain morphology and texture are key factors in determining the properties of laser additively manufactured metallic components. Beyond the traditional trial-and-error approach, which is costly and time-consuming, microstructure control increasin ...
A multi-scale multi-physics modeling framework has been developed to predict solidification cracking susceptibility (SCS) during welding. The framework integrates a thermo-mechanical finite element model to simulate temperature and strain rate profiles during welding, a cellular ...
Wire arc additive manufacturing (WAAM) of high-strength steel (HSS) has gained significant attention for structural applications. Achieving precise control over the manufacturing process and understanding the relationship between process parameters and the resulting material char ...
Wire arc additive manufacturing (WAAM) is a significant area of interest within the field of additive manufacturing (AM). In the present research, WAAM technology was employed to deposit a Ni-based alloy on a ductile cast iron substrate to fabricate a bimetallic structure of Ni-4 ...
In this study, three-dimensional functionally graded NiTi bulk materials were fabricated using laser powder bed fusion (LPBF) by in-situ adding Ni powder into equiatomic NiTi powder. The gradient zone exhibited a Ni composition ranging from approximately 49.6 to 52.4 at.% over a ...
Wire arc additive manufacturing (WAAM) offers a novel approach to fabricate functionally graded components. By changing the wire consumable between layers, chemical grading can be used to obtain specific properties across a part's volume. This is an interesting approach to design ...
Boron doped MoSi2 particles have been envisioned as sacrificial particles for self-healing thermal barrier coatings (TBCs) but their oxidation behaviour is yet not well understood. In this work, oxidation of MoSi2 based particle is studied in the temperature ...
This study examines the interface layer between a high-strength low-alloy steel and an overlaying austenitic stainless steel as deposited through wire arc additive manufacturing in a bi-metal block. By utilizing optical and electron microscopy techniques, and accompanied by pheno ...
The binary Fe–Ni system offers alloys with notably low linear coefficients of thermal expansion (CTE), contingent upon their Ni content. In this respect twin-wire arc additive manufacturing (T-WAAM) presents the opportunity of in-situ alloying through the simultaneous feeding of ...
Additively manufactured Nitinol (NiTi) architectured materials, designed with unit cell architectures, hold promise for customisable applications. However, the common assumption of homogeneity in modeling and additive manufacturing of these architectured materials needs further i ...
To prevent premature triggering of the healing reaction in Mo-Si containing self-healing thermal barrier coating system, an oxygen impenetrable shell (α-Al2O3) around the sacrificial healing particles (MoSi2) is desired. Here an encapsulation meth ...
Localised laser treatments enable the creation of sophisticated austenite/martensite mesostructures in Fe–Ni–C steel with the potential of achieving enhanced mechanical performance. The control of phase topology is essential to modify the properties of these structures on demand ...

Anomaly Detection in WAAM Deposition of Nickel Alloys

Single-Material and Cross-Material Analysis

The current research work investigates the possibility of using machine learning models to deduce the relationship between WAAM (wire arc additive manufacturing) sensor responses and defect presence in the printed part. The work specifically focuses on three materials from the ni ...
Additive manufacturing of NiTi shape memory alloys has attracted attention in recent years, due to design flexibility and feasibility to achieve four-dimensional (4D) function response. To obtain customized 4D functional responses in NiTi structures, tailorable phase transformati ...
Mo(AlxSi1-x)2 alloy with x in the range of 0.35–0.65 were prepared by a one-step spark plasma sintering. To study the exclusive formation of an α-Al2O3 scale, oxidation experiments were conducted in low and high oxygen partia ...
The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application an ...
In energy absorption applications, architectured metallic materials generally suffer from unrecoverable deformation as a result of local yield damage or inelastic buckling. Nitinol (NiTi) offers recoverable deformation and energy dissipation due to its unique superelasticity, whi ...