FH
F. Hollmann
422 records found
1
...
Peroxygenases are promising biocatalysts for selective oxyfunctionalization reactions including hydroxylation, epoxidation, and sulfoxidation. In this study, we explore the activity of two recently reported peroxygenases from Collariella virescens (CviUPO) and Daldinia caldarioru
...
Natural deep eutectic solvents (NaDES)
Green solvents for pharmaceutical applications and beyond
Composed of various biosourced metabolites, NaDES offer significant economic, health, and environmental benefits. Their remarkable ability to interact with target compounds through non-covalent bonds enhances their versatility. As solvents, excipients, cofactors, catalysts, solub
...
Heme-containing unspecific peroxygenases (UPOs) have attracted significant attention as biocatalysts for oxidation reactions due to their ability to function without expensive nicotinamide cofactors. In the recent study, the UPO from aspergillus brasiliensis (AbrUPO) is found to
...
In this study, we present a significant advancement in the field of enzymatic asymmetric reductive amination (ARA) of ketones, a pivotal reaction for chiral amine synthesis. Through a combination of semirational enzyme design and bioprocess development, we achieve the dual activa
...
Fatty acids derived from renewable resources, such as vegetable oils, serve as essential feedstocks in various industries, including surfactants, cosmetics, lubricants, and polymers. Although current industrial applications of fatty acids are mainly centered around carboxylate gr
...
Peroxygenases represent a class of versatile heme-thiolate enzymes capable of catalysing highly selective oxyfunctionalisation reactions, particularly the hydroxylation of non-activated C-H bonds. This transformation, which poses substantial challenges in conventional organic syn
...
Plasma-generated H2O2 can be used to fuel biocatalytic reactions that require H2O2 as a cosubstrate, such as the conversion of ethylbenzene to (R)-1-phenylethanol ((R)-1-PhOl) catalyzed by unspecific peroxygenase from Agrocybe aegerita (rAaeUPO). Immobilization is recently shown
...
Unspecific peroxygenases (UPOs) are highly versatile biocatalysts capable of removing various persistent environmental contaminants and performing sustainable chemical transformations. These oxidoreductases contain heme b as their prosthetic group. As all classical peroxidases, t
...
Enzymatic processes for the remediation of wastewater containing organic pollutants are a promising alternative to advanced treatment processes that are often energy intensive and/or generate waste or by-products. For antibiotics, enzyme systems studied to date have been limited
...
Chemoenzymatic cascade catalysis has emerged as a revolutionary tool for streamlining traditional retrosynthetic disconnections, creating new possibilities for the asymmetric synthesis of valuable chiral compounds. Here we construct a one-pot concurrent chemoenzymatic cascade by
...
Engineering nonribosomal peptide synthetases (NRPSs) has been a “holy grail” in synthetic biology due to their modular nature and limited understanding of catalytic mechanisms. Here, we reported a computational redesign of the “gate-keeper” adenylation domain of the model NRPS-li
...
We report the synthesis and characterization of an artificial peroxygenase (CoN4SA-POase) with CoN4 active sites by supporting single-atom cobalt on polymeric carbon nitrogen, which exhibits high activity, selectivity, stability, and reusability in the oxidation of aromatic alkan
...
This study presents a three-step one pot enzymatic cascade for the synthesis of a δ-lactone. Utilising acetaldehyde, combining 2-deoxyribose-5-phosphate aldolase (DERA) with an alcohol dehydrogenase (ADH) and a cofactor regeneration system this δ-lactone is synthesised with the s
...
Photobiocatalysis
More than just an interesting lab curiosity?
Photobiocatalysis is currently in vogue. The number of reports combining the disciplines of biocatalysis and photocatalysis is rapidly increasing. While the synthetic possibilities enabled by photobiocatalysis are fascinating, the economic feasibility and environmental impact are
...
This study explores a chemoenzymatic cascade to synthesise chiral β-hydroxy ketones by integrating the selective oxyfunctionalisation capabilities of peroxygenases with the carbon-carbon bond-forming progress of organocatalysts. Initial results with simple organocatalysts demonst
...
Oleate hydratases open a biocatalytic access to hydroxy fatty acids by hydration of unsaturated fatty acids. Their practical applicability, however, is hampered by their low stability. In this study we report the immobilization of the oleate hydratase from Rhodococcus erythropoli
...
Vicinal halohydrins are key building blocks to produce bioactive molecules and drugs, especially if they can be obtained in enantiomerically pure form. In this study, we present a bi-enzymatic sequence that allows to obtain vic-halohydrins through a photochemoenzymatic olefin hyd
...
Lignin is the most abundant renewable and sustainable source of aromatic compounds to replace fossil resources, causing environmental issues. However, most lignin generated from pulping and biorefinery processes is combusted or discarded as waste. In this work, we first propose a
...
The biocatalytic oxidative deamination of β-amino alcohols holds significant practical potential in kinetic resolution and/or deracemization process to access (R)-β-amino alcohols. This study exemplifies a notable instance of acquisition and utilization of this valuable oxidative
...
An enzymatic method for the selective hydroxylation of phenols using a peroxygenase from Aspergillus brasiliensis (AbrUPO) is reported. A broad range of phenolic starting materials can be selectively transformed into the corresponding hydroquinones. Semi-preparative syntheses of
...