JW
J.D. Watson
9 records found
1
Anomalous nematic states, recently discovered in ultraclean two-dimensional electron gas, emerge from quantum Hall stripe phases upon further cooling. These states are hallmarked by a local minimum (maximum) in the hard (easy) longitudinal resistance and by an incipient plateau i
...
Dispersive sensing is a powerful technique that enables scalable and high-fidelity readout of solid-state quantum bits. In particular, gate-based dispersive sensing has been proposed as the readout mechanism for future topological qubits, which can be measured by single electrons
...
Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nuclea
...
We report direct detection of charge tunneling between a quantum dot and a superconducting island through radio-frequency gate sensing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-particle tunneling involving Cooper pairs. The quantum dot can act
...
Low-temperature illumination of a two-dimensional electron gas in GaAs quantum wells is known to greatly improve the quality of high-field magnetotransport. The improvement is known to occur even when the carrier density and mobility remain unchanged, but what exactly causes it r
...
Parity control of superconducting islands hosting Majorana zero modes (MZMs) is required to operate topological qubits made from proximitized semiconductor nanowires. We test this control by studying parity effects in hybrid InAs-Al single-Cooper-pair transistors (SCPTs) to evalu
...
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in the effective microwave power
...
We performed effective mass measurements employing microwave-induced resistance oscillation in a tunable-density GaAs/AlGaAs quantum well. Our main result is a clear observation of an effective mass increase with decreasing density, in general agreement with earlier studies which
...
We investigate quantum Hall stripes under an in-plane magnetic field B in a variable-density two-dimensional electron gas. At filling factor ν=9/2, we observe one, two, and zero Binduced reorientations at low, intermediate, and high densities, respectively. The appearance of thes
...