Searched for: contributor%3A%22de+Croon%2C+G.C.H.E.+%28mentor%29%22
(1 - 20 of 67)

Pages

document
Mink, Raoul (author)
Decentralised drone swarms need real time collision avoidance, thus requiring efficient, real time relative localisation. This paper explores different data inputs for vision based relative localisation. It introduces a novel dataset generated in <i>Blender</i>, providing ground truth optic flow and depth. Comparisons to <i>MPI Sintel</i>, an...
master thesis 2023
document
Meester, Ruben (author)
We present a computationally cheap 3D bug algorithm for drones, using stereo vision. Obstacle avoidance is important, but difficult for robots with limited resources, such as drones. Stereo vision requires less weight and power than active distance measurement sensors, but typically has a limited Field of View (FoV). In addition, the stereo...
master thesis 2023
document
Liu, Changrui (author)
Relative localization (RL) is essential for the successful operation of micro air vehicle (MAV) swarms. Achieving accurate 3-D RL in infrastructure-free and GPS-denied environments with only distance information is a challenging problem that has not been satisfactorily solved. In this work, based on the range-based peer-to-peer RL using the...
master thesis 2022
document
Knoops, Stefan (author)
Event based vision has recently attracted a lot of attention. High data rates and robustness to lighting variations make it a valid option for indoor navigation. The previously developed FAITH algorithm calculates a possible Focus of Expansion<br/>area based on negative half-planes generated by optic flow and by employing a RANSAC search, a fast...
master thesis 2022
document
Bouwmeester, Rik (author)
Nano quadcopters are small, agile, and cheap platforms well suited for deployment in narrow, cluttered environments. Due to their limited payload, nano quadcopters are highly constrained in processing power, rendering conventional vision-based methods for autonomous navigation incompatible. Recent machine learning developments promise high...
master thesis 2022
document
Stikker, Roelof (author)
Abstract— Stereo vision is a commonly applied method to achieve depth perception on Micro Air Vehicles (MAVs). Stereo matching algorithms are often optimized for specific environments and camera properties, using the ground truth error as a supervisor. However, in practical applications ground truth data is usually not available. Therefore, in...
master thesis 2022
document
Wang, Chenyao (author)
Flapping wing micro aerial vehicles (FWMAVs) are known for their flight agility and maneuverability. However, their in-gust flight performance and stability is still inferior to their biological counterparts. To this end, a simplified in-gust dynamic model, which could capture the main gust effects on FWMAVs, has been identified with real in...
master thesis 2022
document
Dupon, Fréderic (author)
The use of micro air vehicles (MAV) is becoming increasingly mainstream and with them their applications have become more demanding across the board. The application of MAV’s in large GNSS-denied environments often asks for a distributed and scalable localisation system with minimal reliance on static localisation hardware. In this research a...
master thesis 2022
document
Eggers, Yvonne (author)
Event cameras and spiking neural networks (SNNs) allow for a highly bio-inspired, low-latency and power efficient implementation of optic flow estimation. Just recently, a hierarchical SNN was proposed in which motion selectivity is learned from raw event data in an unsupervised manner using spike-timing-dependent plasticity (STDP). However,...
master thesis 2022
document
Ferede, Robin (author)
Developing optimal controllers for aggressive high speed quadcopter flight remains a major challenge in the field of robotics. Recent work has shown that neural networks trained with supervised learning are a good candidate for real-time optimal quadcopter control. In these methods, the networks (termed G\&amp;CNets) are trained using optimal...
master thesis 2022
document
Verheyen, Jan (author)
Insects have — over millions of years of evolution — perfected many of the systems that roboticists aim to achieve; they can swiftly and robustly navigate through different environments under various conditions while at the same time being highly energy efficient. To reach this level of performance and efficiency one might want to look at and take...
master thesis 2022
document
ten Oever, Erik (author)
In recent years, efforts are focused on developing an acoustic based autonomous detect and avoidance system for UAVs to minimize interference with other air traffic. The purpose of this research is to study the potential of artificial neural networks for fast, grid-free acoustic source localization. A multi-layer perceptron has been trained to...
master thesis 2022
document
LU, Jingyi (author)
Inspired by the natural nervous system, synaptic plasticity rules are applied to train spiking neural networks. Different from learning algorithms such as propagation and evolution that are widely used to train spiking neural networks, synaptic plasticity rules learn the parameters with local information, making them suitable for online learning...
master thesis 2022
document
Tran, Tommy (author)
Semantic segmentation methods have been developed and applied to single images for object segmentation. However, for robotic applications such as high-speed agile Micro Air Vehicles (MAVs) in Autonomous Drone Racing (ADR), it is more interesting to consider temporal information as video sequences are correlated over time. In this work, we...
master thesis 2022
document
Groen, Chris (author)
This paper reviews the application of grammatical evolution for the optimisation of low level parameters and high level behaviors for two drone behaviors, namely wall-following and navigation. In order to optimise these low level parameters and high level behaviors, grammatical evolution was applied to behavior trees. Grammatical evolution...
master thesis 2022
document
van Beurden, Bas (author)
Abstract—Ultra-wideband (UWB) ranging is a very suitable method for indoor localisation of unmanned aerial vehicles (UAVs). Current solutions of UWB ranging however either focus on achieving a high accuracy or focus on scalability. In this research a positioning algorithm for UAVs is presented that combines high accuracy performance with a high...
master thesis 2021
document
Gonzalez Archundia, Guillermo (author)
The continuous improvement and miniaturisation of elements in drones have been essential for making flapping-wing drones a reality. This thesis presents an integral approach for accurate indoor position control and estimation on flapping-wing drones. The approach considers three main aspects to enhance transient response of the drone. The first...
master thesis 2021
document
Vroon, Erik (author)
Drones need to be able to detect and localize each other if they are to collaborate in multi-robot teams or swarms. Typically, computer vision methods based on visual appearance are investigated to this end. In contrast, in this work, a method based on dense optical flow (OF) is developed that detects dynamic objects. This is achieved by...
master thesis 2021
document
Keltjens, Benjamin (author)
Self-supervised deep learning methods have leveraged stereo images for training monocular depth estimation. Although these methods show strong results on outdoor datasets such as KITTI, they do not match performance of supervised methods on indoor environments with camera rotation. Indoor, rotated scenes are common for less constrained...
master thesis 2021
document
Wessendorp, Nikhil (author)
Micro air vehicles (MAVs) are increasingly being considered for aerial tasks such as delivery of goods and surveillance due to their lightweight, compact design and manoeuvrability. To safely and reliably carry out these tasks and navigate to its objective, especially in complex and cluttered environments, the MAV is also required to sense and...
master thesis 2021
Searched for: contributor%3A%22de+Croon%2C+G.C.H.E.+%28mentor%29%22
(1 - 20 of 67)

Pages