Accurate and timely alerts for drivers or automated systems to unfolding collisions remains a challenge in road safety, particularly in highly interactive urban traffic. Existing approaches require labour-intensive annotation of sparse risk, struggle to consider varying contextua
...
Accurate and timely alerts for drivers or automated systems to unfolding collisions remains a challenge in road safety, particularly in highly interactive urban traffic. Existing approaches require labour-intensive annotation of sparse risk, struggle to consider varying contextual factors, or are useful only in the scenarios they are designed for. To address these limits, this study introduces the generalised surrogate safety measure (GSSM), a new approach that learns exclusively from naturalistic driving without crash or risk labels. GSSM captures the patterns of normal driving and estimates the extent to which a traffic interaction deviates from the norm towards unsafe extreme. Utilising neural networks, normal interactions are characterised by context-conditioned distributions of multi-directional spacing between road users. In the same interaction context, a spacing closer than normal entails higher risk of potential collision. Then a context-adaptive risk score and its associated probability can be calculated based on the theory of extreme values. Any measurable factors, such as motion kinematics, weather, lighting, can serve as part of the context, allowing for diverse coverage of safety-critical interactions. Multiple public driving datasets are used to train GSSMs, which are tested with 2,591 real-world crashes and near-crashes reconstructed from the SHRP2 NDS. A vanilla GSSM using only instantaneous states achieves AUPRC of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions. Additional data and contextual factors provide further performance gains. Across various interaction types such as rear-end, merging, and crossing, the accuracy and timeliness of GSSM consistently outperforms existing baselines. GSSM therefore establishes a scalable, context-aware, and generalisable foundation to proactively quantify collision risk in traffic interactions.