TS
T. Suzuki
53 records found
1
Laboratory experiments of wave propagation over rigid and flexible vegetation fields, with the same configurations, were conducted to understand the effect of vegetation flexibility on the drag coefficient (CD). The direct method and the least squares method (LSM), bas
...
In this paper, a Reynolds-averaged Navier-Stokes (RANS) equations solver, interFoam of OpenFOAM®, is validated for wave interactions with a dike, including a promenade and vertical wall, on a shallow foreshore. Such a coastal defence system is composed of both an impermeable dike
...
Understanding key flooding processes such as wave overtopping and overflow (i.e., water flows over a structure when the crest level of the structure is lower than the water level in front) is crucial for coastal management and coastal safety assessment. In port and harbour enviro
...
Vegetation meadows in coastal waters are a key constituent of a future green defense package due to the ecosystem services they provide and the potential to attenuate wave energy. To numerically describe the vegetation dynamics under wave action, this paper presents a novel appli
...
Wave height attenuation in vegetation canopies is often all attributed to the drag force exerted by vegetation, whereas other potential dissipation process is often neglected. Previous studies without vegetation have found that opposing currents can induce wave breaking and great
...
The authors regret that there was a typo in Equation (14b). @en
Wave overtopping at near-vertical seawalls
Influence of foreshore evolution during storms
This work presents the results of an investigation on how wave overtopping at a near-vertical seawall at the back of a sandy foreshore is influenced by sequences of erosive storms. The experiments were carried out in the Large Wave Flume (GWK) at Leibniz University, Hannover (Ger
...
Ongoing climate change is a significant threat to coastal communities. To understand potential risks during extreme storm events, detailed post-overtopping processes are investigated using DualSPHysics and SWASH with a newly developed approach. It is a calibrated-based wave gener
...
The weakly reflective wave generation is a wave generation and absorption method in phase-resolving models, based on the assumption that the waves propagating towards the wave generation boundary are small amplitude shallow water waves with direction perpendicular to the boundary
...
The state-of-The-Art formulas for mean wave overtopping (q) assessment typically require wave conditions at the toe of the structure as input. However, for structures built either on land or in very shallow water, obtaining accurate estimates of wave height and period at the stru
...
Wave transmission and drag coefficients through dense cylinder arrays
Implications for designing structures for mangrove restoration
Mangrove vegetation constitutes a natural coastal defence against waves and erosion. Despite their protective role, mangrove ecosystems have experienced continuous degradation over the last decades due to human causes. At retreating mangrove coastlines, bamboo structures are buil
...
Coastal vegetation has been increasingly recognized as an effective buffer against wind waves. Recent laboratory studies have considered realistic vegetation traits and hydrodynamic conditions, which advanced our understanding of the wave dissipation process in vegetation (WDV) i
...
Due to ongoing climate change, overtopping risk is increasing. In order to have effective countermeasures, it is useful to understand overtopping processes in details. In this study overtopping flow on a dike with gentle and shallow foreshores are investigated using a non-hydrost
...
In this paper, a Reynolds-averaged Navier-Stokes (RANS) equations solver, interFoam of OpenFOAM®, is validated for wave interactions with a dike, including a promenade and vertical wall, on a shallow foreshore. Such a coastal defence system is comprised of both an impermeable dik
...
Practitioners often employ diverse, though not always thoroughly validated, numerical models to directly or indirectly estimate wave overtopping (q) at sloping structures. These models, broadly classified as either phase-resolving or phase-averaged, each have strengths and limita
...
Despite the widely recognized role of infragravity (IG) waves in many often-hazardous nearshore processes, spectral wave models, which exclude IG-wave dynamics, are often used in the design and assessment of coastal dikes. Consequently, the safety of these structures in environme
...
Physical model experiments were conducted in a wave tank at Flanders Hydraulics Research, Antwerp, Belgium, to characterize the wave overtopping and impact force on vertical quay walls and sloping sea dike (1:2.5) under very oblique wave attack (angle between 45° and 80°). This s
...
The work highlights the importance of directional spreading effects on wave overtopping estimation in shallow and mild sloping foreshores. Wave short-crestedness leads, in general, to a reduction of mean overtopping discharges on coastal structures. In the present work, the case
...
Experiences with SWASH on modelling wave propagation over vegetation
Comparisons with lab and field data
The vegetation capacity to protect the coasts from wave action is becoming more important and attractive due to ongoing sea level rise and increasing storminess. In addition, it is a quite environmentally friendly way. Quantifying the vegetation effect in wave propagation will be
...