St
S.L.D. ten Haaf
11 records found
1
We theoretically explore the emergence of strong zero modes in a two-site chain consisting of two quantum dots coupled due to a central dot that mediates electron hopping and singlet superconducting pairing. In the presence of time-reversal symmetry, the on-site Coulomb interacti
...
Quantum-dot-superconductor arrays have emerged as a new and promising material platform for realizing topological Kitaev chains. So far, experiments have implemented a two-site chain with limited protection. Here, we propose an experimentally feasible protocol for scaling up the
...
Majorana zero modes are non-Abelian quasiparticles predicted to emerge at the edges of topological superconductors. A one-dimensional topological superconductor can be realized with the Kitaev model—a chain of spinless fermions coupled via p-wave superconductivity and electron ho
...
A chain of quantum dots (QDs) in semiconductor–superconductor hybrid systems can form an artificial Kitaev chain hosting Majorana bound states (MBSs). These zero-energy states are expected to be localized on the edges of the chain, at the outermost QDs. The remaining QDs, compris
...
The formation of a topological superconducting phase in a quantum-dot-based Kitaev chain requires nearest neighbor crossed Andreev reflection and elastic cotunneling. Here, we report on a hybrid InSb nanowire in a three-site Kitaev chain geometry - the smallest system with well-d
...
Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor–semiconductor hybrids1,2,3,4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superco
...
Connecting double quantum dots via a semiconductor-superconductor hybrid segment offers a platform for creating a two-site Kitaev chain that hosts Majorana zero modes at a finely tuned sweet spot. However, the effective couplings mediated by Andreev bound states in the hybrid are
...
Cooper pairs occupy the ground state of superconductors and are typically composed of maximally entangled electrons with opposite spin. In order to study the spin and entanglement properties of these electrons, one must separate them spatially via a process known as Cooper pair s
...
Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals f
...
A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors ha
...
In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivit
...