GM

G.P. Mazur

Authored

14 records found

Semiconducting–superconducting hybrids are vital components for the realization of high-performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non-abelian Majorana zero modes, which are ...
In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility. Herein, this limitat ...
Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its real ...
The proximity effect in semiconductor-superconductor nanowires is expected to generate an induced gap in the semiconductor. The magnitude of this induced gap, together with the semiconductor properties like spin-orbit coupling and g-factor, depends on the coupling between the mat ...
In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivit ...
Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and sig ...
The realization of hybrid superconductor–semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm b ...
We systematically study three-terminal InSb-Al nanowire devices by using radio-frequency reflectometry. Tunneling spectroscopy measurements on both ends of the hybrid nanowires are performed while systematically varying the chemical potential, magnetic field, and junction transpa ...
A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors ha ...
Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-f ...
The lowest-energy excitations of superconductors do not carry an electric charge, as their wave function is equally electron-like and hole-like. This fundamental property is not easy to study in electrical measurements that rely on the charge to generate an observable signal. The ...
The proximity effect of superconductivity on confined states in semiconductors gives rise to various bound states such as Andreev bound states, Andreev molecules, and Majorana zero modes. While such bound states do not conserve charge, their fermion parity is a good quantum numbe ...
The proximity effect of superconductivity on confined states in semiconductors gives rise to various bound states such as Andreev bound states, Andreev molecules, and Majorana zero modes. While such bound states do not conserve charge, their fermion parity is a good quantum numbe ...
We study the current-phase relation (CPR) of an InSb-Al nanowire Josephson junction in parallel magnetic fields up to 700 mT. At high magnetic fields and in narrow voltage intervals of a gate under the junction, the CPR exhibits π shifts. The supercurrent declines within these ga ...