YM

Yasmine Mosleh

62 records found

Studies have shown that temperature and moisture play a critical role in altering material properties, with both factors contributing to the overall degradation of structural components. This research aims to provide a deeper insight into the complex interplay between environment ...
To achieve the integrity of the honeycomb structure without interlocking or bonding, a 3D braided honeycomb structure was designed and developed using natural fiber (jute) reinforced epoxy resin. To optimize the in-plane compressive performance of 3D braided composite honeycombs, ...
The accurate prediction of fatigue life in fibre-reinforced polymer (FRP) composites remains a central challenge in structural engineering, due to the extensive duration and cost of conventional fatigue characterisation. To address this, physics-based approaches offer an appealin ...
Fibre bridging is an important phenomenon influencing the mode I delamination growth behaviour in composite materials. Accurate modelling of this phenomenon is required in order to be able to account for its effects in damage tolerance evaluation of composite structures. Therefor ...
Delamination fatigue propagation is known to cause a progressive degradation of stiffness and strength in composite laminates. Since delamination tends to follow a preferential plane, fracture resistance is conveniently analysed in terms of dominant loading modes at the crack tip ...
This study investigates the effects of hygrothermal conditions on the fatigue performance of flax FRP composites. Cross-ply laminates were tested in tension-tension fatigue in five different hygrothermal conditions. Humidity was initially expected to enhance fatigue life at 30% R ...
Fatigue behaviour of fibre-reinforced polymers (FRPs) in laboratory is typically evaluated under continuous loading. However, real-life loading scenarios of structures, e.g. bridges or wind turbine blades, often involve complex histories. These include fatigue loading interruptio ...
This study presents a new method with improved accuracy for measuring the tensile properties of elementary flax fibres using an automated single-fibre tester with Digital Image Correlation (DIC) for strain tracking, validated with glass fibres of known properties. Modulus values ...
This study focuses on interlayer hybridisation of flax with silk fibres and the resulting damage mechanisms controlled by the hybrid composite configuration, can lead to an improved balance between stiffness, strength and toughness/ductility. The results demonstrate that a sandwi ...

Biobased Composite-Metal Hybrids

On Vibrational Damping and Impact Resistance of FLAx REinforced Aluminum (FLARE)

Fiber metal laminates (FMLs) or metal-composite hybrid materials synergize the advantages of metals and composites, in particular, they combine the impact resistance of metals and the excellent fatigue and corrosion resistance of fiber-reinforced polymers. FMLs have been mainly u ...
This study focuses on interlayer hybridisation of flax with silk fibres and the resulting damage mechanisms controlled by the hybrid composite configuration, can lead to an improved balance between stiffness, strength and toughness/ductility. The results demonstrate that a sandwi ...

Morphological analysis of inosculated connections in weeping figs

Insights on density, geometry, fiber structures, and compositional variations

Trees exhibit adaptability in response to external loads, which allows them to form an inosculated connection (self-growing connection) with a neighboring tree. Such connections have the mechanical potential to build living tree structures. Although qualitative studies have studi ...

Fiber Orientation Effects on Mode I Fatigue Delamination

Proposed Model for Saturation and Zero-Bridging Prediction

Characterisation of the effect of lay-up on the delamination growth revealed a complex set of damage characteristics. Tortuous propagation resulted in higher fibre bridge densification in the off-axis laminates, requiring an increased number of experimental tests to validate the ...
3-D braided composites are a promising material for manufacturing tubular structures. However, a thorough understanding of their damage mechanisms under torsion is required to maximize their potential applications. The present work constructed a multiscale equivalent model, integ ...
This study aims to improve laboratory aging procedures for bituminous materials to better replicate field conditions. Two binders and mixtures were subjected to various levels of humidity, temperatures, pressures, film thicknesses, and aging durations. By comparing these lab-aged ...

Hygrothermal ageing of dry gelatine adhesive films

Microstructure-property relationships

Gelatine adhesives, also known as animal glues, are collagen-based water-soluble biopolymers derived from vertebrate connective tissues. One of the various fields in which gelatine adhesives are widely used is the conservation of cultural heritage such as decorated furniture and ...
The development of bio-based fibre-reinforced polymer composites (FPRs) has accelerated in recent years aiming at replacing synthetic FRPs in primary structures. Comparative case studies on biobased fibres (such as flax and hemp) indicate their potential to replace synthetic glas ...

Designing Stiff And Tough Biocomposites By Hybridization Of Flax And Silk Fibres

Scrutinizing The Effects Of Fibre Ratio And Laminate Lay-Up Configuration

In this study, the hybridization of flax and silk fibre reinforced composites, at ply level, were studied and compared to their monolithic counterparts. Hybrid FRP laminates were produced via the filmstacking compression moulding method using the highly ductile thermoplastic high ...
Biobased fibre-reinforced polymer (FRP) composites, consisting of natural lignocellulosic fibres such as flax or hemp, are great alternatives to synthetic fibres to mitigate the environmental impact of high-performance composites in engineering structures. Natural fibres such as ...
Driven by the energy transition and the reduction of carbon emissions, pultruded CFRP plates have emerged as an affordable high performance material for designing wind turbines with larger rotors. To enable the creation of thicker laminates, pre-cured plates are bonded together u ...