YM

Yasmine Mosleh

65 records found

As a sustainable and eco-friendly material, flax fibres offer a viable alternative to glass fibres in composite applications due to their good specific mechanical properties. However, addressing their moisture sensitivity is crucial to expanding their use in various applications. ...

Morphological analysis of inosculated connections in weeping figs

Insights on density, geometry, fiber structures, and compositional variations

Trees exhibit adaptability in response to external loads, which allows them to form an inosculated connection (self-growing connection) with a neighboring tree. Such connections have the mechanical potential to build living tree structures. Although qualitative studies have studi ...
This study presents a new method with improved accuracy for measuring the tensile properties of elementary flax fibres using an automated single-fibre tester with Digital Image Correlation (DIC) for strain tracking, validated with glass fibres of known properties. Modulus values ...
Studies have shown that temperature and moisture play a critical role in altering material properties, with both factors contributing to the overall degradation of structural components. This research aims to provide a deeper insight into the complex interplay between environment ...
This study investigates the effects of hygrothermal conditions on the fatigue performance of flax FRP composites. Cross-ply laminates were tested in tension-tension fatigue in five different hygrothermal conditions. Humidity was initially expected to enhance fatigue life at 30% R ...
Fatigue behaviour of fibre-reinforced polymers (FRPs) in laboratory is typically evaluated under continuous loading. However, real-life loading scenarios of structures, e.g. bridges or wind turbine blades, often involve complex histories. These include fatigue loading interruptio ...
The accurate prediction of fatigue life in fibre-reinforced polymer (FRP) composites remains a central challenge in structural engineering, due to the extensive duration and cost of conventional fatigue characterisation. To address this, physics-based approaches offer an appealin ...
To achieve the integrity of the honeycomb structure without interlocking or bonding, a 3D braided honeycomb structure was designed and developed using natural fiber (jute) reinforced epoxy resin. To optimize the in-plane compressive performance of 3D braided composite honeycombs, ...
This study focuses on interlayer hybridisation of flax with silk fibres and the resulting damage mechanisms controlled by the hybrid composite configuration, can lead to an improved balance between stiffness, strength and toughness/ductility. The results demonstrate that a sandwi ...

Fiber Orientation Effects on Mode I Fatigue Delamination

Proposed Model for Saturation and Zero-Bridging Prediction

Characterisation of the effect of lay-up on the delamination growth revealed a complex set of damage characteristics. Tortuous propagation resulted in higher fibre bridge densification in the off-axis laminates, requiring an increased number of experimental tests to validate the ...
Delamination fatigue propagation is known to cause a progressive degradation of stiffness and strength in composite laminates. Since delamination tends to follow a preferential plane, fracture resistance is conveniently analysed in terms of dominant loading modes at the crack tip ...

Biobased Composite-Metal Hybrids

On Vibrational Damping and Impact Resistance of FLAx REinforced Aluminum (FLARE)

Fiber metal laminates (FMLs) or metal-composite hybrid materials synergize the advantages of metals and composites, in particular, they combine the impact resistance of metals and the excellent fatigue and corrosion resistance of fiber-reinforced polymers. FMLs have been mainly u ...
Fibre bridging in laminated composites has a significant effect on Mode I delamination behaviour, resulting in improved opening resistance and altered fatigue crack growth rates. This study investigates the sensitivity of a recently developed superposition model to capture monoto ...
Fibre bridging is an important phenomenon influencing the mode I delamination growth behaviour in composite materials. Accurate modelling of this phenomenon is required in order to be able to account for its effects in damage tolerance evaluation of composite structures. Therefor ...
This study investigates the interface between hemp fibre and thermoplastic polymer matrices such as polypropylene (PP) and poly-acrylate (Elium®). The analysis was conducted using both traditional dynamic contact angle measurements with various probe liquids and a more novel appr ...
This study focuses on interlayer hybridisation of flax with silk fibres and the resulting damage mechanisms controlled by the hybrid composite configuration, can lead to an improved balance between stiffness, strength and toughness/ductility. The results demonstrate that a sandwi ...
This study aims to improve laboratory aging procedures for bituminous materials to better replicate field conditions. Two binders and mixtures were subjected to various levels of humidity, temperatures, pressures, film thicknesses, and aging durations. By comparing these lab-aged ...
Lining techniques for the treatment of structurally damaged canvas paintings have been in use since at least the seventeenth century, with on-going invention, development, and refinement. These systems can be categorised based on their adhesive component – natural or synthetic – ...
Synthetic fibre-reinforced polymer composites (FRPs) have long been favored in structural engineering for their exceptional mechanical properties. However, their environmental impact due to energy intensive manufacturing, and disposal has prompted exploration into sustainable bio ...

Designing Stiff And Tough Biocomposites By Hybridization Of Flax And Silk Fibres

Scrutinizing The Effects Of Fibre Ratio And Laminate Lay-Up Configuration

In this study, the hybridization of flax and silk fibre reinforced composites, at ply level, were studied and compared to their monolithic counterparts. Hybrid FRP laminates were produced via the filmstacking compression moulding method using the highly ductile thermoplastic high ...