Quantum dot arrays in silicon and germanium

Review (2020)
Authors

W.I.L. Lawrie (TU Delft - QCD/Veldhorst Lab, TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft)

H.G.J. Eenink (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Veldhorst Lab)

N.W. Hendrickx (TU Delft - QCD/Veldhorst Lab, TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft)

J.M. Boter (TU Delft - QCD/Vandersypen Lab, TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft)

L. Petit (Kavli institute of nanoscience Delft, TU Delft - QCD/Veldhorst Lab, TU Delft - QuTech Advanced Research Centre)

S. Amitonov (TU Delft - QCD/Vandersypen Lab, Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre)

M. Lodari (TU Delft - QCD/Scappucci Lab, Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre)

B. Paquelet Wuetz (Kavli institute of nanoscience Delft, TU Delft - QCD/Scappucci Lab, TU Delft - QuTech Advanced Research Centre)

C. Volk (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab, Kavli institute of nanoscience Delft)

S.G.J. Philips (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab)

G. Droulers (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Vandersypen Lab, Kavli institute of nanoscience Delft)

N. Kalhor (Kavli institute of nanoscience Delft, TU Delft - BUS/Quantum Delft, TU Delft - QuTech Advanced Research Centre)

F. van Riggelen (TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft, TU Delft - QCD/Veldhorst Lab)

D. Brousse (TNO)

A Sammak (TNO)

L.M.K. Vandersypen (TU Delft - QCD/Vandersypen Lab, Kavli institute of nanoscience Delft, TU Delft - QN/Vandersypen Lab, TU Delft - QuTech Advanced Research Centre)

G. Scappucci (TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Scappucci Lab, Kavli institute of nanoscience Delft)

M. Veldhorst (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/Veldhorst Lab)

Research Group
QCD/Veldhorst Lab
Copyright
© 2020 W.I.L. Lawrie, H.G.J. Eenink, N.W. Hendrickx, J.M. Boter, L. Petit, S. Amitonov, M. Lodari, B. Paquelet Wuetz, C.A. Volk, S.G.J. Philips, G. Droulers, N. Kalhor, F. van Riggelen, D. Brousse, A. Sammak, L.M.K. Vandersypen, G. Scappucci, M. Veldhorst
To reference this document use:
https://doi.org/10.1063/5.0002013
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 W.I.L. Lawrie, H.G.J. Eenink, N.W. Hendrickx, J.M. Boter, L. Petit, S. Amitonov, M. Lodari, B. Paquelet Wuetz, C.A. Volk, S.G.J. Philips, G. Droulers, N. Kalhor, F. van Riggelen, D. Brousse, A. Sammak, L.M.K. Vandersypen, G. Scappucci, M. Veldhorst
Research Group
QCD/Veldhorst Lab
Issue number
8
Volume number
116
DOI:
https://doi.org/10.1063/5.0002013
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Electrons and holes confined in quantum dots define excellent building blocks for quantum emergence, simulation, and computation. Silicon and germanium are compatible with standard semiconductor manufacturing and contain stable isotopes with zero nuclear spin, thereby serving as excellent hosts for spins with long quantum coherence. Here, we demonstrate quantum dot arrays in a silicon metal-oxide-semiconductor (SiMOS), strained silicon (Si/SiGe), and strained germanium (Ge/SiGe). We fabricate using a multi-layer technique to achieve tightly confined quantum dots and compare integration processes. While SiMOS can benefit from a larger temperature budget and Ge/SiGe can make an Ohmic contact to metals, the overlapping gate structure to define the quantum dots can be based on a nearly identical integration. We realize charge sensing in each platform, for the first time in Ge/SiGe, and demonstrate fully functional linear and two-dimensional arrays where all quantum dots can be depleted to the last charge state. In Si/SiGe, we tune a quintuple quantum dot using the N + 1 method to simultaneously reach the few electron regime for each quantum dot. We compare capacitive crosstalk and find it to be the smallest in SiMOS, relevant for the tuning of quantum dot arrays. We put these results into perspective for quantum technology and identify industrial qubits, hybrid technology, automated tuning, and two-dimensional qubit arrays as four key trajectories that, when combined, enable fault-tolerant quantum computation.

Files

5.0002013taverne.pdf
(pdf | 2.66 Mb)
- Embargo expired in 24-08-2020
License info not available