JZ

Julien Zichi

Authored

8 records found

We characterized the performance of abiased superconducting nanowire to detect X-ray photons. The device, made of a 10 nm thin NbTiN film and fabricated on a dielectric substrate (SiO2, Nb3O5) detected 1000 times larger signal than anticipated from direct X-ray absorption. We att ...
We use dispersion engineering to control the signal propagation speed in the feed lines of superconducting single-photon detectors. Using this technique, we demonstrate time-division-multiplexing of two-pixel detectors connected with a slow-RF transmission line, all realized usin ...
In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown prom ...
Integration of superconducting nanowire single-photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high-performance detectors. Here we overcome t ...
The requirements in quantum optics experiments for high single-photon detection efficiency, low timing jitter, low dark count rate and short dead time have been fulfilled with the development of superconducting nanowire single-photon detectors. Although they offer a detection eff ...
We experimentally investigate the performance of NbTiN superconducting nanowire single photon detectors above the base temperature of a conventional Gifford-McMahon cryocooler (2.5 K). By tailoring design and thickness (8 - 13 nm) of the detectors, high performance, high operatin ...
Single-photon generation, processing, and detection are the three main components of any quantum optical circuit. We present our results on integration of semiconducting nanowire quantum dots, dielectric waveguides, and ultrahigh performance superconducting nanowire single-photon ...
Single-photon generation, processing, and detection are the three main components of any quantum optical circuit. We present our results on integration of semiconducting nanowire quantum dots, dielectric waveguides, and ultrahigh performance superconducting nanowire single-photon ...