SS

Stephan Steinhauer

10 records found

Due to stringent thermal budgets in cryogenic technologies such as superconducting quantum computers and sensors, electronic building blocks that simultaneously offer low energy consumption, fast switching, low error rates, a small footprint, and simple fabrication are pivotal fo ...
Since their first demonstration in 2001 [Gol’tsman et al., Appl. Phys. Lett. 79, 705-707 (2001)], superconducting-nanowire single-photon detectors (SNSPDs) have witnessed two decades of great developments. SNSPDs are the detector of choice in most modern quantum optics experiment ...
Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counti ...
Ultra-high system detection efficiency (SDE) s uperconducting nanowire single-photon detectors are demonstrated for a broad range of wavelengths, from UV to mid-infrared, opening novel possibilities in the fields of quantum photonics, neuroimaging and astronomy.@en
Shortly after their inception, superconducting nanowire single-photon detectors (SNSPDs) became the leading quantum light detection technology. With the capability of detecting single-photons with near-unity efficiency, high time resolution, low dark count rate, and fast recovery ...
Hybrid integration provides an important avenue for incorporating atom-like solid-state single-photon emitters into photonic platforms that possess no optically-active transitions. Hexagonal boron nitride (hBN) is particularly interesting quantum emitter for hybrid integration, a ...
We characterized the performance of abiased superconducting nanowire to detect X-ray photons. The device, made of a 10 nm thin NbTiN film and fabricated on a dielectric substrate (SiO2, Nb3O5) detected 1000 times larger signal than anticipated from direct X-ray absorption. We att ...

Superconducting nanowire single-photon detectors

A perspective on evolution, state-of-the-art, future developments, and applications

Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field with a wide ...
We use dispersion engineering to control the signal propagation speed in the feed lines of superconducting single-photon detectors. Using this technique, we demonstrate time-division-multiplexing of two-pixel detectors connected with a slow-RF transmission line, all realized usin ...
The requirements in quantum optics experiments for high single-photon detection efficiency, low timing jitter, low dark count rate and short dead time have been fulfilled with the development of superconducting nanowire single-photon detectors. Although they offer a detection eff ...