S
Steinhauer
9 records found
1
Since their first demonstration in 2001 [Gol’tsman et al., Appl. Phys. Lett. 79, 705-707 (2001)], superconducting-nanowire single-photon detectors (SNSPDs) have witnessed two decades of great developments. SNSPDs are the detector of choice in most modern quantum optics experiment
...
Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counti
...
Ultra-high system detection efficiency (SDE) s uperconducting nanowire single-photon detectors are demonstrated for a broad range of wavelengths, from UV to mid-infrared, opening novel possibilities in the fields of quantum photonics, neuroimaging and astronomy.@en
Shortly after their inception, superconducting nanowire single-photon detectors (SNSPDs) became the leading quantum light detection technology. With the capability of detecting single-photons with near-unity efficiency, high time resolution, low dark count rate, and fast recovery
...
Superconducting nanowire single-photon detectors
A perspective on evolution, state-of-the-art, future developments, and applications
Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field with a wide
...
Hybrid integration provides an important avenue for incorporating atom-like solid-state single-photon emitters into photonic platforms that possess no optically-active transitions. Hexagonal boron nitride (hBN) is particularly interesting quantum emitter for hybrid integration, a
...
We characterized the performance of abiased superconducting nanowire to detect X-ray photons. The device, made of a 10 nm thin NbTiN film and fabricated on a dielectric substrate (SiO2, Nb3O5) detected 1000 times larger signal than anticipated from direct X-ray absorption. We att
...
We use dispersion engineering to control the signal propagation speed in the feed lines of superconducting single-photon detectors. Using this technique, we demonstrate time-division-multiplexing of two-pixel detectors connected with a slow-RF transmission line, all realized usin
...
The requirements in quantum optics experiments for high single-photon detection efficiency, low timing jitter, low dark count rate and short dead time have been fulfilled with the development of superconducting nanowire single-photon detectors. Although they offer a detection eff
...