RD

R.J. Dolleman

24 records found

Authored

Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from 10 to 100 ns in drums with a diameter ranging from 2 to 7 μm. The large time constants and their scaling with diameter points toward a thermal resistance at the edge of the ...

The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D mate ...

Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications. Here, graphene membranes are used to pump gases through nanopores using optothermal forces, enabling the study of gas flow through nanopores at frequencies above 100 kH ...
Recent theory has predicted large temperature differences between the in-plane [longitudinal (LA) and transverse (TA)] and out-of-plane [flexural (ZA)] acoustic phonon baths in locally heated suspended graphene. To verify these predictions, and their implications for understandin ...

Diamond is a highly desirable material for state-of-the-art micro-electromechanical (MEMS) devices, radio-frequency filters and mass sensors, due to its extreme properties and robustness. However, the fabrication/integration of diamond structures into Si-based components remai ...

Current wafer-scale fabrication methods for graphene-based electronics and sensors involve the transfer of single-layer graphene by a support polymer. This often leaves some polymer residue on the graphene, which can strongly impact its electronic, thermal, and mechanical reso ...

Stochastic switching between the two bistable states of a strongly driven mechanical resonator enables detection of weak signals based on probability distributions, in a manner that mimics biological systems. However, conventional silicon resonators at the microscale require a la ...
Worlds first graphene-based Pirani pressure sensor is presented. Due to the decreased area and low thickness, the graphene-based Pirani pressure sensor allows for low power applications down to 0.9 mW. Using an innovative, transfer-free process, suspended graphene beams are reali ...

We measure the thermal time constants of suspended single-layer molybdenum disulfide drums by their thermomechanical response to a high-frequency modulated laser. From this measurement, the thermal diffusivity of single-layer MoS2 is found to be 1.14×10-5m2/s on average. Using ...

Micro and nanomechanical sensors are indispensable in modern consumer electronics, automotive and medical industries. Gas pressure sensors are currently the most widespread membrane-based micromechanical sensors. By reducing their size, their unit costs and energy consumption ...

In the field of nanomechanics, parametric excitations are of interest since they can greatly enhance sensing capabilities and eliminate cross-talk. Above a certain threshold of the parametric pump, the mechanical resonator can be brought into parametric resonance. Here we demo ...

Contactless characterization of mechanical resonances using Fabry-Perot interferometry is a powerful tool to study the mechanical and dynamical properties of atomically thin membranes. However, amplitude calibration is often not performed or only possible by making assumptions on ...

The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in respo ...

We present suspended graphene pressure sensors fabricated using an innovative surface micro-machining process. The great advantage of this process is that the molybdenum (Mo) catalyst layer for multi-layer graphene chemical vapor deposition (CVD) is also used as a sacrificial lay ...
We show that graphene membranes that separate two gases at identical pressure are deflected by osmotic pressure. The osmotic pressure is a consequence of differences in gas permeation rates into a few-layer graphene enclosed cavity. The deflection of the membrane is detected by m ...

Contributed

Nanomechanical resonators made from graphene are widely researched for their potential applications due to their high sensitivity. Their atomic scale thickness makes it that these resonators exhibit amplitude-dependent damping at relatively small driving forces. To further increa ...
Gas permeation through graphene membranes has received considerable attention for water purification and molecular sieving applications. However, characterization of the permeation has been limited to long timescales of minutes. This thesis shows a method for measuring gas permea ...
Ever since its inception, graphene has been the subject of research in many parts of the
world. This is due to its exceptional mechanical and electrical properties, which makes it
ideal for NanoElectroMechanical (NEMS) devices. The inherent nature of NEMS devices,
inc ...