Circular Image

M.S. Pera

155 records found

There is a lack of a steady and solid influx of information retrieval (IR) research that has children (as the user group) as the protagonist. Existing work is scattered, conducted by only a few research groups, and often based on small-scale user studies or data that cannot be wi ...
Recommendation algorithms are often trained using data sources reflecting the interactions of a broad user base. As a result, the dominant preferences of the majority may overshadow those of other groups with unique interests. This is something performance analyses of recommendat ...

De-centering the (Traditional) user

Multistakeholder evaluation of recommender systems

Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, these systems cannot be evaluated strictly by the overall utility of a single ...
The Workshop on Information Retrieval for Understudied Users (IR4U2) serves as a platform to highlight information retrieval (IR) research that directly impacts often understudied user groups. The second (IR4U2) workshop focuses on a user-centred AI perspective, which is vital fo ...
In an existing study, the InsideOut Framework is used to produce and explore the emotional profiles of search engines (SE) in response to queries formulated by children aged 9 to 11 in the classroom context, revealing the emotional diversity of SE responses. Since then, there hav ...
Simulation is widely used in recommender systems research to study algorithm behavior and its impact on users. A common strategy involves adopting a universal choice model to represent users, assuming all follow the same consumption patterns. This one-size-fits-all approach overl ...
The rise of digital platforms for accessing online content-from popular search engines to social media sites- has contributed to the (un)intentional propagation of misleading information. This phenomenon, known as Information Disorder, affects individuals and society. Extensive r ...
Information Retrieval (IR) remains an active, fast-paced area of research. However, most advances in IR have predominantly benefited the so-called “classical” users, e.g., English-speaking adults. We envision IR4U2as a forum to spotlight efforts that, while sparse, consider diver ...
In this work, we reason how focusing on Information Retrieval (IR) for children and involving them in participatory studies would benefit the IR community. The Child Computer Interaction (CCI) community has embraced the child as a protagonist as their main philosophy, regarding c ...
Current approaches in automatic readability assessment have found success with the use of large language models and transformer architectures. These techniques lead to accuracy improvement, but they do not offer the interpretability that is uniquely required by the audience most ...
Web search has evolved into a platform people rely on for opinion formation on debated topics. Yet, pursuing this search intent can carry serious consequences for individuals and society and involves a high risk of biases. We argue that web search can and should empower users to ...
When using web search engines to conduct inquiries on debated topics, searchers' interactions with search results are commonly affected by a combination of searcher and system biases. While prior work has mainly investigated these biases in isolation, there is a lack of a compreh ...

AltRecSys

A Workshop on Alternative, Unexpected, and Critical Work on Recommendation

The AltRecsys workshop, held in conjunction with the 18th edition of the ACM Conference on Recommender Systems (RecSys) in Bari, Italy, provides a platform for highlighting “alternative” work in recommender systems. Modeled after alt.chi and the CRAFT sessions at the FAccT confer ...
Large Language Models (LLMs) are expected to significantly impact various socio-technical systems, offering transformative possibilities for improved interaction between humans and technology. However, their integration poses complex challenges due to the intricate interplay betw ...
Popularity bias is a prominent phenomenon in recommender systems (RS), especially in the music domain. Although popularity bias mitigation techniques are known to enhance the fairness of RS while maintaining their high performance, there is a lack of understanding regarding users ...

Not Just Algorithms

Strategically Addressing Consumer Impacts in Information Retrieval

Information Retrieval (IR) systems have a wide range of impacts on consumers. We offer maps to help identify goals IR systems could—or should—strive for, and guide the process of scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to a ...
We discuss the foundation of a collaborative effort to explore AI's role in supporting (teachers and) children in their learning experiences. We integrate principles of educational psychology, AI, and HCI, and align with best practices in education while undertaking a human-cente ...
Children often interact with search engines within a classroom context to complete assignments or discover new information. To successfully identify relevant resources among those presented on a search engine results page (SERP), users must first be able to comprehend the text in ...

Kid Query

Co-designing an Application to Scaffold Query Formulation

In this work, we discuss the findings emerging from co-design sessions between children ages 6 to 11 and adults, which were conducted to advance knowledge on how to best support children using well-known search tools for online information discovery. Specifically, we argue that b ...