Circular Image

M.S. Pera

149 records found

Recommendation algorithms are often trained using data sources reflecting the interactions of a broad user base. As a result, the dominant preferences of the majority may overshadow those of other groups with unique interests. This is something performance analyses of recommendat ...

AltRecSys

A Workshop on Alternative, Unexpected, and Critical Work on Recommendation

The AltRecsys workshop, held in conjunction with the 18th edition of the ACM Conference on Recommender Systems (RecSys) in Bari, Italy, provides a platform for highlighting “alternative” work in recommender systems. Modeled after alt.chi and the CRAFT sessions at the FAccT confer ...
When using web search engines to conduct inquiries on debated topics, searchers' interactions with search results are commonly affected by a combination of searcher and system biases. While prior work has mainly investigated these biases in isolation, there is a lack of a compreh ...
Current approaches in automatic readability assessment have found success with the use of large language models and transformer architectures. These techniques lead to accuracy improvement, but they do not offer the interpretability that is uniquely required by the audience most ...
Children often interact with search engines within a classroom context to complete assignments or discover new information. To successfully identify relevant resources among those presented on a search engine results page (SERP), users must first be able to comprehend the text in ...
Information Retrieval (IR) remains an active, fast-paced area of research. However, most advances in IR have predominantly benefited the so-called “classical” users, e.g., English-speaking adults. We envision IR4U2as a forum to spotlight efforts that, while sparse, consider diver ...
Web search has evolved into a platform people rely on for opinion formation on debated topics. Yet, pursuing this search intent can carry serious consequences for individuals and society and involves a high risk of biases. We argue that web search can and should empower users to ...
Large Language Models (LLMs) are expected to significantly impact various socio-technical systems, offering transformative possibilities for improved interaction between humans and technology. However, their integration poses complex challenges due to the intricate interplay betw ...
We discuss the foundation of a collaborative effort to explore AI's role in supporting (teachers and) children in their learning experiences. We integrate principles of educational psychology, AI, and HCI, and align with best practices in education while undertaking a human-cente ...
In the current digital landscape, humans take center stage. This has caused a paradigm shift in the realm of intelligent technologies, prompting researchers and (industry) practitioners to reflect on the challenges and complexities involved in understanding the (potential) users ...
Popularity bias is a prominent phenomenon in recommender systems (RS), especially in the music domain. Although popularity bias mitigation techniques are known to enhance the fairness of RS while maintaining their high performance, there is a lack of understanding regarding users ...
In this work, we reason how focusing on Information Retrieval (IR) for children and involving them in participatory studies would benefit the IR community. The Child Computer Interaction (CCI) community has embraced the child as a protagonist as their main philosophy, regarding c ...

From Potential to Practice

Intellectual Humility During Search on Debated Topics

An essential characteristic for unbiased and diligent information-seeking that can enable informed opinion formation and decision-making is intellectual humility (IH), the awareness of the limitations of one's knowledge and opinions. While researchers have recognized the potentia ...

Kid Query

Co-designing an Application to Scaffold Query Formulation

In this work, we discuss the findings emerging from co-design sessions between children ages 6 to 11 and adults, which were conducted to advance knowledge on how to best support children using well-known search tools for online information discovery. Specifically, we argue that b ...

Not Just Algorithms

Strategically Addressing Consumer Impacts in Information Retrieval

Information Retrieval (IR) systems have a wide range of impacts on consumers. We offer maps to help identify goals IR systems could—or should—strive for, and guide the process of scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to a ...

Misinformation in video recommendations

An exploration of Top-N recommendation algorithms

With this paper, we delve into the problem of misinformation propagation in the video recommendation domain, focusing on top-N recommendation algorithms (RAs). We evaluate a broad spectrum of RAs to probe their ability to minimize misinformation recommendations while optimizing t ...
Social networks are a platform for individuals and organizations to connect with each other and inform, advertise, spread ideas, and ultimately influence opinions. These platforms have been known to propel misinformation. We argue that this could be compounded by the recommender ...
We introduce a re-ranking model that augments the functionality of standard search engines to aid classroom search activities for children (ages 6–11). This model extends the known listwise learning-to-rank framework by balancing risk and reward. Doing so enables the model to pri ...

Searching for the Whole Truth

Harnessing the Power of Intellectual Humility to Boost Better Search on Debated Topics

We often use search engines when seeking information for opinion-forming and decision-making on debated topics. However, searching for resources on debated topics to gain well-rounded knowledge is cognitively demanding, leaving us vulnerable to cognitive biases, such as confirmat ...

Users Meet Clarifying Questions

Toward a Better Understanding of User Interactions for Search Clarification

The use of clarifying questions (CQs) is a fairly new and useful technique to aid systems in recognizing the intent, context, and preferences behind user queries. Yet, understanding the extent of the effect of CQs on user behavior and the ability to identify relevant information ...