M.S. Pera
160 records found
1
...
We’re Still Doing It (All) Wrong
Recommender Systems, Fifteen Years Later
In 2011, Xavier Amatriain sounded the alarm: recommender systems research was “doing it all wrong” [1]. His critique, rooted in statistical misinterpretation and methodological shortcuts, remains as relevant today as it was then. But rather than correcting course, we added new la
...
In an existing study, the InsideOut Framework is used to produce and explore the emotional profiles of search engines (SE) in response to queries formulated by children aged 9 to 11 in the classroom context, revealing the emotional diversity of SE responses. Since then, there hav
...
The rise of digital platforms for accessing online content-from popular search engines to social media sites- has contributed to the (un)intentional propagation of misleading information. This phenomenon, known as Information Disorder, affects individuals and society. Extensive r
...
The Workshop on Information Retrieval for Understudied Users (IR4U2) serves as a platform to highlight information retrieval (IR) research that directly impacts often understudied user groups. The second (IR4U2) workshop focuses on a user-centred AI perspective, which is vital fo
...
De-centering the (Traditional) user
Multistakeholder evaluation of recommender systems
Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, these systems cannot be evaluated strictly by the overall utility of a single
...
There is a lack of a steady and solid influx of information retrieval (IR) research that has children (as the user group) as the protagonist. Existing work is scattered, conducted by only a few research groups, and often based on small-scale user studies or data that cannot be wi
...
Simulation is widely used in recommender systems research to study algorithm behavior and its impact on users. A common strategy involves adopting a universal choice model to represent users, assuming all follow the same consumption patterns. This one-size-fits-all approach overl
...
Recommendation algorithms are often trained using data sources reflecting the interactions of a broad user base. As a result, the dominant preferences of the majority may overshadow those of other groups with unique interests. This is something performance analyses of recommendat
...
From Previous Plays to Long-Term Tastes
Exploring the Long-term Reliability of Recommender Systems Simulations for Children
Studying the interplay of children and recommender systems (RS) is ethically and practically challenging, making simulation a promising alternative for exploration. However, recent simulation approaches that aim to model natural user-RS interactions typically rely on behavioral d
...
Recommender systems research seldom considers children as a user group, and when it does, it is anchored on datasets where children are underrepresented, risking overlooking their interests, favoring those of the majority, i.e., mainstream users. Recently, Ungruh et al. demonstra
...
The way people seek, access, and use information for learning has changed. Once the primary gateway to information, search engines now share the stage with various digital/social platforms. This change is perhaps more notable among teenagers and has undoubtedly influenced how the
...
Not Just Algorithms
Strategically Addressing Consumer Impacts in Information Retrieval
Information Retrieval (IR) systems have a wide range of impacts on consumers. We offer maps to help identify goals IR systems could—or should—strive for, and guide the process of scoping how to gauge a wide range of consumer-side impacts and the possible interventions needed to a
...
Misinformation in video recommendations
An exploration of Top-N recommendation algorithms
With this paper, we delve into the problem of misinformation propagation in the video recommendation domain, focusing on top-N recommendation algorithms (RAs). We evaluate a broad spectrum of RAs to probe their ability to minimize misinformation recommendations while optimizing t
...
Children often interact with search engines within a classroom context to complete assignments or discover new information. To successfully identify relevant resources among those presented on a search engine results page (SERP), users must first be able to comprehend the text in
...
Information Retrieval (IR) remains an active, fast-paced area of research. However, most advances in IR have predominantly benefited the so-called “classical” users, e.g., English-speaking adults. We envision IR4U2as a forum to spotlight efforts that, while sparse, consider diver
...
Large Language Models (LLMs) are expected to significantly impact various socio-technical systems, offering transformative possibilities for improved interaction between humans and technology. However, their integration poses complex challenges due to the intricate interplay betw
...
Web search has evolved into a platform people rely on for opinion formation on debated topics. Yet, pursuing this search intent can carry serious consequences for individuals and society and involves a high risk of biases. We argue that web search can and should empower users to
...
Toward Personalised Learning Experiences
Beyond Prompt Engineering
We discuss the foundation of a collaborative effort to explore AI's role in supporting (teachers and) children in their learning experiences. We integrate principles of educational psychology, AI, and HCI, and align with best practices in education while undertaking a human-cente
...
Popularity bias is a prominent phenomenon in recommender systems (RS), especially in the music domain. Although popularity bias mitigation techniques are known to enhance the fairness of RS while maintaining their high performance, there is a lack of understanding regarding users
...