PB
P.A.N. Bosman
8 records found
1
Machine learning (ML) models are used increasingly in high-stakes areas such as health and finance because of their strong performance. However, having good performance in metrics such as accuracy or the f1 score alone is not all that is important as trust is also essential in th
...
Deformable Image Registration (DIR) is a medical imaging process involving the spatial alignment of two or more images using a transformation model that can account for non-rigid deformations. B-spline-based transformation models have emerged as a common approach to express such
...
The Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is a state-of-the-art algorithm for single-objective, real-valued optimization. As many practical applications are inherently constrained, evolutionary algorithms are equipped with constraint handling tech
...
Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found approximation sets are not smoothly navigable because the s
...
Neural networks (NNs) have, in recent years, become a major part of modern pattern recognition, and both theoretical and applied research evolve at an astounding pace. NNs are usually trained via gradient descent (GD), but research has shown that GD is not always capable of train
...
Computer vision tasks, like supervised image classification, are effectively tackled by convolutional neural networks, provided that the architecture, which defines the structure of the network, is set correctly. Neural Architecture Search (NAS) is a relatively young and increasi
...
Model-based evolutionary algorithms (MBEAs) are praised for their broad applicability to black-box optimization problems. In practical applications however, they are mostly used to repeatedly optimize different instances of a single problem class, a setting in which specialized a
...