MM

M. Mastrangeli

64 records found

The ability to identify individual protein molecules using Surface-Enhanced Raman Scattering (SERS) spectroscopy, without the need for labelling, is a significant advancement in biomedical diagnostics. However, the inherently small Raman scattering cross-section of most (bio) mol ...

FORCETRACKER

A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms

Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart in vitro. Currently, multiple EHT platforms are used by both industry and academia for different applications, such as drug d ...
It is estimated that 99 % of the world population is exposed to air pollution above air quality guidelines and this is responsible for 6.7 million premature deaths annually. Lung and skin are the first organs exposed to air pollution, and this is associated with carcinogenesis, i ...
We present a novel silicon-based organ-on-chip (OoC) device featuring integrated microelectrodes to assess barrier function in biological tissue co-cultures. The microfluidic device consists of two vertically-stacked microchannels separated by a submicron-thin, microporous silico ...
Micro-physiological systems (MPS) hold the potential for advancing drug research by emulating realistic in vitro human (patho)physiology models. These systems replicate organ microenvironments, delivering stimuli similar to those experienced by organs in vivo. Active biomechanica ...
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are ...
This abstract describes the design, simulation and experimental characterization of a thin film thermal flow sensor fabricated using flat panel display technology. Patterned microelectrodes were successfully applied as a thermal flow sensor, showing good correlation between exper ...
Skeletal muscle spatial analyses have revealed unexpected regionalized gene expression patterns challenging the understanding of muscle as a homogeneous tissue. Here, we present a protocol for the spatial analysis of transcript and protein levels in murine skeletal muscle. We des ...
Poor stimulus-response correlation, caused by acoustic reflections from conventional culture substrates, poses a significant challenge in cellular mechanistic studies of ultrasound neuromodulation. Existing specialized setups that mitigate this interference have limited recording ...
Climate and justice are interconnected. However, simply raising ethical issues associated with the links between climate change, technology, and health is insufficient. Rather, policies and practices need to consider ethics ahead of time. If it is only added “after the fact,” pol ...
Continuous monitoring of tissue microphysiology is a key enabling feature of the organ-on-chip (OoC) approach for in vitro drug screening and disease modeling. Integrated sensing units are particularly convenient for microenvironmental monitoring. However, sensitive in vitro and ...
Organ-on-chip (OoC) is emerging as a key technology for improved pre-clinical drug testing. Monitoring tissues and the artificial microenvironment in OoC devices is critical to recapitulate human physiology; however, sensing is often invasive, superficial, and not continuous over ...
We present a novel design of elastic micropillars for tissue self-assembly in engineered heart tissue (EHT) platforms. The innovative tapered profile confines reproducibly the tissue position along the main micropillar axis, increasing the accuracy of tissue contraction force mea ...
The Smart Multi-Well Plate (SMWP), an open technology platform for Organ-on-Chip (OoC) technology developed as part of the Moore4Medical (M4M) consortium, aims to showcase the advantages of standardization in design, manufacturing and assembly for OoC [1]. In previously presented ...
Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less than ...
Ionic polymer metal composites (IPMCs) are a class of materials with a rising appeal in biological micro-electromechanical systems (bio-MEMS) due to their unique properties (low voltage output, bio-compatibility, affinity with ionic medium). While tailoring and improving actuatio ...
The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent s ...
Demand for biocompatible, non-invasive, and continuous real-time monitoring of organs-on-chip has driven the development of a variety of novel sensors. However, highest accuracy and sensitivity can arguably be achieved by integrated biosensing, which enables in situ monitoring of ...
Bulk piezoelectric ultrasound transducers on integrated circuits offer unique properties for therapeutic applications of ultrasound neuromodulation. However, current implementations of such transducers are not optimized for the high transmit efficiency required to stimulate neuro ...
We present a novel capacitive displacement sensor integrated in an engineered heart tissue (EHT) platform to measure tissue contractile properties in-situ. Co-planar spiral capacitors were integrated into the elastomeric substrate underneath the two micropillars of a previously d ...