MM
M. Mastrangeli
69 records found
1
Non-Contact Dielectric Spectroscopy of Multi-Layered Substrates
Towards Organ-on-Chip Applications
Dielectric spectroscopy is a label-free, non-contact, real-time, multi-layer sensing technology, and has been used for identification and quantification of many biological materials. A combination of such sensing features is in demand for monitoring of organ-on-chip systems; howe
...
Engineered heart tissues (EHTs) formed around flexible pillars are used to measure the contraction force of myocytes. When based on cardiac cells derived from human induced pluripotent stem cells (hiPSCs), EHTs capture human cardiac physiology and drug responses in vitro. However
...
In this work, we present a numerical testbench, realized in a circuit simulation environment, enabling a priori uncertainty evaluation of dielectric spectroscopy in the application field of organs-on-chip. This testbench evaluates the impact of noise, ambient temperature variatio
...
We present a novel silicon-based organ-on-chip (OoC) device featuring integrated microelectrodes to assess barrier function in biological tissue co-cultures. The microfluidic device consists of two vertically-stacked microchannels separated by a submicron-thin, microporous silico
...
FORCETRACKER
A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms
Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart in vitro. Currently, multiple EHT platforms are used by both industry and academia for different applications, such as drug d
...
We investigated the evaporative crystallization of aqueous glycine sessile droplets on hydrophilic glass, hydrophobic Teflon surfaces, and hydrophobic Teflon surfaces, where the contact angle is manipulated dynamically with electrowetting. Microscopy experiments and analytical ch
...
It is estimated that 99 % of the world population is exposed to air pollution above air quality guidelines and this is responsible for 6.7 million premature deaths annually. Lung and skin are the first organs exposed to air pollution, and this is associated with carcinogenesis, i
...
Real-time pH and oxygen concentration sensing is critical for monitoring tissue damage and organ health; however, there is no report to date in such context of a single device that can simultaneously detect both pH and oxygen changes. This paper presents the development of a sing
...
The ability to identify individual protein molecules using Surface-Enhanced Raman Scattering (SERS) spectroscopy, without the need for labelling, is a significant advancement in biomedical diagnostics. However, the inherently small Raman scattering cross-section of most (bio) mol
...
Poor stimulus-response correlation, caused by acoustic reflections from conventional culture substrates, poses a significant challenge in cellular mechanistic studies of ultrasound neuromodulation. Existing specialized setups that mitigate this interference have limited recording
...
This abstract describes the design, simulation and experimental characterization of a thin film thermal flow sensor fabricated using flat panel display technology. Patterned microelectrodes were successfully applied as a thermal flow sensor, showing good correlation between exper
...
Climate and justice are interconnected. However, simply raising ethical issues associated with the links between climate change, technology, and health is insufficient. Rather, policies and practices need to consider ethics ahead of time. If it is only added “after the fact,” pol
...
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are
...
Skeletal muscle spatial analyses have revealed unexpected regionalized gene expression patterns challenging the understanding of muscle as a homogeneous tissue. Here, we present a protocol for the spatial analysis of transcript and protein levels in murine skeletal muscle. We des
...
Micro-physiological systems (MPS) hold the potential for advancing drug research by emulating realistic in vitro human (patho)physiology models. These systems replicate organ microenvironments, delivering stimuli similar to those experienced by organs in vivo. Active biomechanica
...
Bulk piezoelectric ultrasound transducers on integrated circuits offer unique properties for therapeutic applications of ultrasound neuromodulation. However, current implementations of such transducers are not optimized for the high transmit efficiency required to stimulate neuro
...
We present a novel design of elastic micropillars for tissue self-assembly in engineered heart tissue (EHT) platforms. The innovative tapered profile confines reproducibly the tissue position along the main micropillar axis, increasing the accuracy of tissue contraction force mea
...
Towards increased throughput and automated workflows for organs- on-a-chip, a novel high-definition electrophysiology multiwell plate is developed in the Moore4Medical project [1]. It consists of an advanced CMOS microelectrode array (MEA) chip with 16 sampling areas, each featur
...
Engineered heart tissues (EHTs) showed great potential in recapitulating tissue organization and function of the human heart in vitro [1]. Contractile kinetics is one key hallmark of cardiac tissue function and maturation level of cardiomyocytes, and a critical readout from EHT p
...
We present a novel capacitive displacement sensor integrated in an engineered heart tissue (EHT) platform to measure tissue contractile properties in-situ. Co-planar spiral capacitors were integrated into the elastomeric substrate underneath the two micropillars of a previously d
...