Rosario Incandela
7 records found
1
Authored
Cryogenic characterization and modeling of two nanometer bulk CMOS technologies (0.16-μm and 40-nm) are presented in this paper. Several devices from both technologies were extensively characterized at temperatures of 4 K and below. Based on a detailed understanding ...
Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to at least a few thous ...
Quantum computing holds the promise to achieve unprecedented computation power and to solve problems today intractable. State-of-the-art quantum processors consist of arrays of quantum bits (qubits) operating at a very low base temperature, typically a few tens of mK, as shown ...
Quantum computers could efficiently solve problems that are intractable by today's computers, thus offering the possibility to radically change entire industries and revolutionize our lives. A quantum computer comprises a quantum processor operating at cryogenic temperature an ...
The characterization of nanometer CMOS transistors of different aspect ratios at deep-cryogenic temperatures (4 K and 100 mK) is presented for two standard CMOS technologies (40 nm and 160 nm). A detailed understanding of the device physics at those temperatures was developed ...