MT

Mohammed Tihtih

22 records found

Defects and impurities within semiconductor materials pose significant challenges. This investigation scrutinizes the response of a single dopant donor impurity located in nanostructured semiconductors, specifically quantum wells subjected to both harmonic and inharmonic confinem ...
Ultrathin MoO3 semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic propert ...
Photonic crystal (PhC) has been studied for their potential to improve the efficiency of Cu2ZnSnS4 solar cells by increasing the generated photocurrent by integrating it as a back reflector with almost zero transmission through the absorption active zone of ...
The aim of this research is to analyze the influence of various factors on the photo-ionization cross-section in (Al, Ga)N/AlN double triangular quantum wells. Using the finite difference method, the effects of the electric field, hydrostatic pressure, temperature, and Ga concent ...
The phenomenon of hot carriers, which are generated through the nonradiative decay of surface plasmons in ultrathin metallic films, offers an intriguing opportunity for subbandgap photodetection even at room temperature. These hot carriers possess sufficient energy to inject into ...

Linear and nonlinear optical absorption coefficients in InGaN/GaN quantum wells

Interplay between intense laser field and higher-order anharmonic potentials

This computational investigation delves into the electronic and optical attributes of InGaN/GaN nanostructures subjected to both harmonic and anharmonic confinement potentials, coupled with the influence of a nonresonant intense laser field (ILF). The theoretical framework incorp ...

Enhancing Emission via Radiative Lifetime Manipulation in Ultrathin InGaN/GaN Quantum Wells

The Effects of Simultaneous Electric and Magnetic Fields, Thickness, and Impurity

Ultra-thin quantum wells, with their unique charge confinement effects, are essential in enhancing the electronic and optical properties crucial for optoelectronic device optimization. This study focuses on theoretical investigations into radiative recombination lifetimes in nano ...
The present research examines the development of new porous ceramic bricks from Hungarian zeolitic tuff and tea waste as building materials. Recycling waste materials as a pore-forming agent in brick-making is a promising solution to environmental and economic challenges. Several ...

Innovative sustainable ceramic Bricks

Exploring the synergy of natural zeolite tuff and aluminum dross

This study explored the efficient utilization of natural zeolite tuff and aluminum dross for making porous ceramic bricks, aiming to address environmental damage from waste disposal. Different compositions of these materials were used to create six batches of bricks, followed by ...
Self-powered UV sensing has enormous potential in military and civilian applications. However, achieving high responsivity and fast response/recovery time presents significant challenges. Self-powered photodetectors (PDs) have several advantages over traditional PDs, including hi ...
In this study, we prepared a homogeneous fine powder of barium titanate (BaTiO3, BT) doped with different concentrations of strontium (x = 0, 0.05, 0.125, 0.15, 0.20, and 0.3) and having the composition Ba1-xSrxTiO3 (barium strontium ti ...
Porous mullite-based ceramics have been developed using a mixture of zeolite-poor rock and alumina through mechanical activation and reactive sintering. The experimental findings demonstrate that the in-situ mullite growth may develop in a variety of shapes, including whiskers, n ...

Role of A-site (Sr), B-site (Y), and A, B sites (Sr, Y) substitution in lead-free BaTiO3 ceramic compounds

Structural, optical, microstructure, mechanical, and thermal conductivity properties

Strontium and Yttrium-doped and co-doped BaTiO3 (BT) ceramics with the stoichiometric formulas BaTiO3, B1-xSrxTiO3, Ba1-xYxTiO3, BaTi1-xYxO3, Ba1-xY ...
The use of electronic devices that incorporate multilayer ceramic capacitors (MLCCs) is on the rise, requiring materials with good electrical properties and a narrow band gap. This study synthesized yttrium-substituted barium titanate (Ba1-xYxTiO3 ...
The BTO, BFTC, and BCTF compounds were synthesized by the sol-gel method. The XRD study revealed the formation of single-phase tetragonal perovskite structures with the space group (P4mm). The crystalline parameters were studied as a function of Fe and Co contents and occupation ...

Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors

Integrating first-principles calculations with experimental analysis

This study focused on investigating the optoelectronic properties of molybdenum trioxide (α-MoO3) thin films using the atomic layer deposition (ALD) technique through different cycle numbers and theoretical investigation. Initial band gap calculations using standard DF ...
Nanostructures of ultrathin 2D MoO3 semiconductors have gained significant attention in the field of transparent optoelectronics and nanophotonics due to their exceptional responsiveness. In this study, we investigate self-powered α-MoO3/Ir/α-MoO3 ...
The application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivity v ...
Artificial periodic structures drew a lot of attention because of their ability to be built with novel acoustic features. A novel nanostructured phononic superlattice (NPhS) based two-dimensional multilayer structure as a high-sensitive multichannel liquid sensor that provided br ...
This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ultra ...