YE

Yasin Ramazan Eker

Authored

20 records found as author

The paper deals with the conception and feasibility of the device structure based on the optimized PIN-(In, Ga)N homojunction solar cells. A new and efficient model combining the most realistic ones considering the impacts of band gap narrowing, collection efficiency, Shockley ...

UV sensors hold significant promise for various applications in both military and civilian domains. However, achieving exceptional detectivity, responsivity, and rapid rise/decay times remains a notable challenge. In this study, we address this challenge by investigating the phot ...

Nanostructures of ultrathin 2D MoO3 semiconductors have gained significant attention in the field of transparent optoelectronics and nanophotonics due to their exceptional responsiveness. In this study, we investigate self-powered α-MoO3/Ir/α-MoO3

Surface plasmon technology is regarded as having significant potential for the enhancement of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption of 2D MoO3 photodetectors. An ultrathin MoO3/Ir/SiO2/Si heterojunction Schottky self-pow ...

The phenomenon of hot carriers, which are generated through the nonradiative decay of surface plasmons in ultrathin metallic films, offers an intriguing opportunity for subbandgap photodetection even at room temperature. These hot carriers possess sufficient energy to inject i ...

The phenomenon of hot carriers, which are generated through the nonradiative decay of surface plasmons in ultrathin metallic films, offers an intriguing opportunity for subbandgap photodetection even at room temperature. These hot carriers possess sufficient energy to inject i ...

Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors

Integrating first-principles calculations with experimental analysis

This study focused on investigating the optoelectronic properties of molybdenum trioxide (α-MoO3) thin films using the atomic layer deposition (ALD) technique through different cycle numbers and theoretical investigation. Initial band gap calculations using standard ...

Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors

Integrating first-principles calculations with experimental analysis

This study focused on investigating the optoelectronic properties of molybdenum trioxide (α-MoO3) thin films using the atomic layer deposition (ALD) technique through different cycle numbers and theoretical investigation. Initial band gap calculations using standard ...

Impact of thickness on optoelectronic properties of α-MoO3 film photodetectors

Integrating first-principles calculations with experimental analysis

This study focused on investigating the optoelectronic properties of molybdenum trioxide (α-MoO3) thin films using the atomic layer deposition (ALD) technique through different cycle numbers and theoretical investigation. Initial band gap calculations using standard ...

In this study, we delved into the influence of Ir nanofilm coating thickness on the optical and optoelectronic behavior of ultrathin MoO3 wafer-scale devices. Notably, the 4 nm Ir coating showed a negative Hall voltage and high carrier concentration of 1.524 × 1019 cm−3 with 0.19 ...

Self-powered UV sensing has enormous potential in military and civilian applications. However, achieving high responsivity and fast response/recovery time presents significant challenges. Self-powered photodetectors (PDs) have several advantages over traditional PDs, including ...

The application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivit ...

This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ul ...

This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ul ...

This study was on the optoelectronic properties of multilayered two-dimensional MoS2 and WS2 materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ul ...

Effect of in-/ex-situ annealing on the structure, optical, photoluminescence, electrical characterization and gas sensing dynamics on CdS thin films are presented. Raman characterizations showed an increase in the peak intensity with increasing the annealing temperature under ...

Effect of in-/ex-situ annealing on the structure, optical, photoluminescence, electrical characterization and gas sensing dynamics on CdS thin films are presented. Raman characterizations showed an increase in the peak intensity with increasing the annealing temperature under ...

Molybdenum - tungsten oxide (Mo1-xWxO3, x = 1, 0.8, and 0.6) nanostructured thin films-based room temperture (RT) gas sensors are prepared by means of reactive RF magnetron co-sputtering at 400 °C. The structural, morphology, topography, optica ...

The negative charge trapped in the oxygen species present in metal oxides like Tin Oxide (SnO2) caused an upward band bending and makes these materials as promising sensing materials for CO2 detection. However, sensors based on pure SnO2 may on ...

The negative charge trapped in the oxygen species present in metal oxides like Tin Oxide (SnO2) caused an upward band bending and makes these materials as promising sensing materials for CO2 detection. However, sensors based on pure SnO2 may on ...