HH

H.A.R. Homulle

23 records found

Authored

LinoSPAD2

A 512×1 linear SPAD camera with system-level 135-ps SPTR and a reconfigurable computational engine for time-resolved single-photon imaging

The LinoSPAD2 camera combines a 512×1 linear single-photon avalanche diode (SPAD) array with an FPGA-based photon-counting and time-stamping platform, to create a reconfigurable sensing system capable of detecting single photons. The read-out is fully parallel, where each SPAD ...

Single-photon avalanche diode (SPAD) arrays are solid-state detectors that offer imaging capabilities at the level of individual photons, with unparalleled photon counting and time-resolved performance. This fascinating technology has progressed at a very fast pace in the past ...

Quantum computing promises an exponential speed-up of computation compared to what is nowadays achievable with classical computers. In this way, it enables the evaluation of more complex models and the breaching of current security algorithms. For the operation of a quantum syste ...

Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for ru ...

Cryogenic characterization and modeling of two nanometer bulk CMOS technologies (0.16-&#x03BC;m and 40-nm) are presented in this paper. Several devices from both technologies were extensively characterized at temperatures of 4 K and below. Based on a detailed understanding ...

A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integrat ...

Both CMOS bandgap voltage references and temperature sensors rely on the temperature behavior of either CMOS substrate BJTs or MOS transistors in weak inversion. Bipolar transistors are generally preferred over MOS transistors because of their lower spread. However, at deep-cr ...

To enable scalable quantum computers, it has been proposed that the quantum–classical interface has to be integrated and operated at deep-cryogenic temperatures. Common to all electronics is the power management and distribution through the system. These systems are currently ...

Electronics, from basic sub-micron MOSFETS to large-scale FPGAs, has been shown to operate at deep-cryogenic temperatures. Any digital system relies on an accurate clock for operation. While a clock signal can be provided from room temperature into the cryogenic environment, a ...

In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance ...

Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to at least a few thous ...

Quantum computing holds the promise to achieve unprecedented computation power and to solve problems today intractable. State-of-the-art quantum processors consist of arrays of quantum bits (qubits) operating at a very low base temperature, typically a few tens of mK, as shown ...

Cryogenic CMOS, or cryo-CMOS circuits and systems, are emerging in VLSI design for many applications, in primis quantum computing. Fault-tolerant quantum bits (qubits) in surface code configurations, one of the most accepted implementations in quantum computing, operate in deep s ...

Quantum computers could efficiently solve problems that are intractable by today's computers, thus offering the possibility to radically change entire industries and revolutionize our lives. A quantum computer comprises a quantum processor operating at cryogenic temperature an ...

The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infras ...

CryoCMOS Hardware Technology

A Classical Infrastructure for a Scalable Quantum Computer

We propose a classical infrastructure for a quantum computer implemented in CMOS. The peculiarity of the approach is to operate the classical CMOS circuits and systems at deep-cryogenic temperatures (cryoCMOS), so as to ensure physical proximity to the quantum bits, thus reducing ...

We propose an analog-to-digital converter (ADC) architecture, implemented in an FPGA, that is fully reconfigurable and easy to calibrate. This approach allows to alter the design, according to the system requirements, with simple modifications in the firmware. Therefore it can ...

This paper presents the cryogenic characterization of the bipolar substrate PNPs that are typically employed as sensing elements in CMOS integrated temperature sensors. PNPs realized in a standard 160-nm CMOS technology were characterized over the temperature range from 7 K to ...

In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores’ lifetime, which are however in the (sub-)nanosecond range. We have integra ...
Analog signals are used in many applications and systems, such as cyber physical systems, sensor networks and automotive applications. These are also applications where the use of FPGAs is continuously growing. To date, however there is no direct integration between FPGAs, which ...