JB

J.J.A. Baselmans

101 records found

Low-loss deposited dielectrics are beneficial for the advancement of superconducting integrated circuits for astronomy. In the microwave band (approximately 1-10 GHz) the dielectric loss at cryogenic temperatures and low electric field strengths is dominated by two-level systems. ...
Understanding telescope pointing (i.e. line of sight) is important for observing the cosmic microwave background (CMB) and astronomical objects. The Moon is a candidate astronomical source for pointing calibration. Although the visible size of the Moon (30`) is larger ...
We report measurements characterizing the performance of a kinetic inductance detector array designed for a wavelength of 25 microns and very low optical background level suitable for applications such as a far-infrared instrument on a cryogenically cooled space telescope. In a p ...

Correction to

Directional Filter Design and Simulation for Superconducting On-Chip Filter-Banks (Journal of Low Temperature Physics, (2024), 216, 1-2, (144-153), 10.1007/s10909-024-03118-w)

In this article, the wrong figure appeared as Figures 1 and 2; the figure should have appeared as shown below Figure 1 (right side of the figure only): (Figure presented.) Figure 2: (Figure presented.)@en
Context. Integrated superconducting spectrometers (ISSs) for wide-band submillimeter (submm) astronomy use quasi-optical systems for coupling radiation from the telescope to the instrument. Misalignment in these systems is detrimental to the system performance. The common method ...
GroundBIRD is a ground-based cosmic microwave background (CMB) experiment for observing the polarization pattern imprinted on large angular scales (ℓ > 6) from the Teide Observatory in Tenerife, Spain. Our primary scientific objective is a precise measurement of the optical de ...
Achieving amplification with high gain and quantum-limited noise is a difficult problem to solve. Parametric amplification using a superconducting transmission line with high kinetic inductance is a promising technology not only to solve this problem but also adding several benef ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...
Many superconducting on-chip filter-banks suffer from poor coupling to the detectors behind each filter. This is a problem intrinsic to the commonly used half-wavelength filter, which has a maximum theoretical coupling of 50 %. In this paper, we introduce a phase-coherent filter, ...
Future generation of astronomical imaging spectrometers are targeting the far infrared wavelengths to close the THz astronomy gap. Similar to lens antenna coupled Microwave Kinetic Inductance Detectors (MKIDs), lens absorber coupled MKIDs are a candidate for highly sensitive larg ...
Kinetic inductance detectors (KIDs) are superconducting energy-resolving detectors, sensitive to single photons from the near-infrared to ultraviolet. We study a hybrid KID design consisting of a β-phase tantalum (β-Ta) inductor and a Nb-Ti-N interdigitated capacitor. The devices ...
Characterization of wide-field optics in the Terahertz regime imposes new and demanding requirements for testing systems. Basic optical parameters can be determined from scalar planar characterization, obtained using monochromatic or thermal sources located in the instrument foca ...
Large format focal plane arrays (FPAs) of dielectric lenses are promising candidates for wide field-of-view submillimeter imagers. In this work, we optimize the scanning gain of such imagers via shaping lens surfaces. We develop an optimization procedure using a field correlation ...
Terahertz Integral Field Unit with Universal Nanotechnology (TIFUUN) is a wideband spectral mapper operating at (sub)-millimeter wavelengths. The instrument is under development for ground-based astronomy and will be deployed to the ASTE telescope in Chile. In this work, the buil ...
We present a phase and amplitude beam pattern measurement technique using harmonic mixers. This allows a simultaneous multi-frequency phase sensitive characterization of a low resolution and wideband (220-420GHz) on-chip spectrometer using microwave kinetic inductance detectors. ...
Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of ∼ 30–50% in the visible and near-infrared. To reach high absorption efficiencies (90–100%) the KID must be embedded in an optical stack. We show an optical stack ...

DESHIMA 2.0

Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations

Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the d ...

Hydrogenated Amorphous Silicon Carbide

A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits

Low-loss deposited dielectrics will benefit superconducting devices such as integrated superconducting spectrometers, superconducting qubits, and kinetic inductance parametric amplifiers. Compared with planar structures, multilayer structures such as microstrips are more compact ...

Deshima 2.0

Rapid Redshift Surveys and Multi-line Spectroscopy of Dusty Galaxies

We present a feasibility study for the high-redshift galaxy part of the Science Verification Campaign with the 220–440 GHz deshima 2.0 integrated superconducting spectrometer on the ASTE telescope. The first version of the deshima 2.0 chip has been recently manufactured and teste ...