JB

J. Bueno Lopez

Authored

19 records found

DESHIMA 2.0

Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations

Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the d ...

Time-Domain Modelling of Pulsed Photoconducting Sources - Part II

Characterization of an LT GaAs Bow-Tie Antenna

Drude's description of the response of low-temperature gallium arsenide to optical pulse excitation is used to evaluate the components of a time-domain Norton equivalent circuit of a photoconductive antenna (PCA) source. The saturation of the terahertz (THz) radiated power occurr ...
There is an increasing demand for large format detector arrays with large bandwidths and high antenna efficiencies for future THz astronomical radiometric applications. For direct detection instruments, it is also desired to have antennas with dual polarization reception in order ...
In this paper, we present an experimental strategy to analyze the harmonic content of mm-wave frequency extenders using the VNA (absolute) power calibration step, without requiring spectrum analyzers and/or separate downconverters. The spectral purity of the upconverted band of t ...
Photoconductive antennas (PCAs) are used for imaging and sensing applications because of their ability to radiate short pulses with large bandwidths in the THz regime. The characterization of PCAs has previously been done using a time-domain Norton equivalent circuit. Thanks to a ...
Photoconductive antennas (PCAs) are promising candidates for sensing and imaging systems. We have investigated their properties under pulsed laser illumination both in transmission and reception. First, a transmitting PCA has been characterized including a power measurement. Then ...
This contribution presents the development of an electrically small lens antenna using an artificially loaded thermoplastic at 140-170GHz. We will present the on-going development of the Fly’s Eye front end antenna concept that was presented in [1]. The antenna is composed on a d ...
We present the design, fabrication and characterization of a broadband lossless matching layer for silicon lens arrays. The proposed matching layer is based on silicon frusta (truncated pyramids) on top of the lens array fabricated by means of laser ablation. This matching layer ...
This paper describes the microfabrication and electrical characterization of aluminum-coated superconducting through-silicon vias (TSVs) with sharp superconducting transition above 1 K. The sharp superconducting transition was achieved by means of fully conformal and void-free DC ...
State-of-the-art THz pulsed commercial systems operating over large bandwidth suffer from high dispersion or low radiation efficiency due to the poor coupling between the transmitter and receiver photoconductive antennas (PCAs). In this work, we present the fabrication and charac ...
The time evolution of voltages and currents in a pulsed photo conductive antenna (PCA) source is evaluated resorting to a rigorous procedure that stems from semiconductor physics first, to define the phenomena involved in the generation of the photocurrent, and then relies on an ...
We present the design, fabrication, and full characterisation (sensitivity, beam pattern, and frequency response) of a background limited broadband antenna coupled kinetic inductance detector covering the frequency range from 1.4 to 2.8 THz. This device shows photon noise limited ...
This paper presents the fabrication and electrical characterization of superconducting high-aspect ratio through-silicon vias DC-sputtered with aluminum. Fully conformal and void-free coating of 300 μm-deep and 50 μmwide vias with Al, a CMOS-compatible and widely available superc ...
This contribution presents the design and sub-mm wave measurements of a wideband dual polarized leaky lens antenna coupled to kinetic inductance detector (KIDs) to be specifically used for tightly spaced focal plane arrays. The antenna is planar and composed by two crossed slots, ...
We describe a microfabrication process that, thanks to a specifically tailored sidewall profile, enables for the first-time wafer-scale arrays of high-aspect ratio through-silicon vias (TSVs) coated with DC-sputtered Aluminum, achieving at once superconducting and CMOS-compatible ...
Microwave kinetic inductance detectors (MKIDs) promise high sensitivity, combined with device simplicity and intrinsic multiplexibility. We demonstrate in this paper the realization of an imaging system consisting of an array of 961 antenna-coupled MKIDs that is read out using a ...
Microwave kinetic inductance detectors (MKIDs) promise high sensitivity, combined with device simplicity and intrinsic multiplexibility. We demonstrate in this paper the realization of an imaging system consisting of an array of 961 antenna-coupled MKIDs that is read out using a ...
Microwave Kinetic Inductance Detectors (MKIDs) are becoming a very promising candidate for next generation imaging instruments for the far infrared. A MKID consists of a superconducting resonator coupled to a feed-line used for the readout. In the devices presented here radiation ...
Photoconductive antennas (PCAs) are promising candidates for sensing and imaging applications. In recent years, our group has investigated their properties under pulsed laser illumination in transmission using a time-domain (TD) Norton equivalent circuit. Here, we extend this ana ...

Contributed

1 records found

An Electromagnetic Model for Thermal Emission

Characterization of Thermal Radiation from Ohmic Media

A rigorous model based on classic electromagnetism to characterize the thermal radiation of real ohmic media is presented in this thesis. This model explains the available energy due to thermal agitation inside ohmic material based on Johnson's theory of thermal noise in electric ...