NN

N.S. Narayan

21 records found

To improve access to electricity, decentralized, solar-based off-grid solutions like Solar Home Systems (SHSs) and rural micro-grids have recently seen a prolific growth. However, electrical load profiles, usually the first step in determining the electrical sizing of off-grid en ...

The long road to universal electrification

A critical look at present pathways and challenges

Nearly 840 million people still lack access to electricity, while over a billion more have an unreliable electricity connection. In this article, the three different electrification pathways-grid extension, centralized microgrids, and standalone solar-based solutions, such as pic ...

Correction to:

Stochastic load profile construction for the multi-tier framework for household electricity access using off-grid DC appliances

The original publication’s Fig. 5 image lacks some of its labels. On the top right, the label for the solid black line is BCF^ while the label of the broken blue line is BCF^. The correct label for the solid black line should be BCfmin^ while the broken blue line should be BCF = ...
The use of batteries is indispensable in stand-alone photovoltaic (PV) systems, and the physical integration of a battery pack and a PV panel in one device enables this concept while easing the installation and system scaling. However, the influence of high temperatures is one of ...
Solar Home Systems (SHS) have proven to be an effective means to tackle the global energy poverty that still affects around 1 billion people. However, present-day SHS (which are standalone systems with usually a purely dc architecture) have a limited power rating (usually up to 1 ...

Solar home systems for improving electricity access

An off-grid solar perspective towards achieving universal electrification

Almost a billion people globally lack access to electricity. For various reasons, grid extension is not an immediately viable solution for the un(der-) electrified communities. As most of these electricity-starved regions lie in tropical latitudes, the use of off-grid solar-based ...

Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification

Optimal SHS sizing for the multi-tier framework for household electricity access

With almost 1.1 billion people lacking access to electricity, solar-based off-grid products like Solar Home Systems (SHS) have become a promising solution to provide basic electricity needs in un(der)-electrified regions. Therefore, optimal system sizing is a vital task as both o ...
Off-grid solar home systems (SHSs) currently constitute a major source of providing basic electricity needs in un(der)-electrified regions of the world, with around 73 million households having benefited from off-grid solar solutions by 2017. However, in and of itself, state-of-t ...
Given the complementary nature of photovoltaic (PV) generation and energy storage, the combination of a solar panel and a battery pack in one single device is proposed. To realize this concept, the PV Battery-Integrated Module (PBIM), it is fundamental to analyze the system archi ...
The fluctuating nature of solar power generation makes the coupling of energy storage and solar energy inevitable. This paper explores the integration of all the typical components of a PV-battery system in one single module, introducing a prototype of the so-called PV-Battery In ...
Due to the variable nature of the photovoltaic generation, energy storage is imperative, and the combination of both in one device is appealing for more efficient and easy‐to‐use devices. Among the myriads of proposed approaches, there are multiple challenges to overcome to make ...
The rapid increase in the adoption of Solar Home Systems (SHS) in recent times hopes to ameliorate the global problem of energy poverty. The battery is a vital but usually the most expensive part of an SHS; owing to the least lifetime among other SHS components, it is also the fi ...
The coupling of solar panels and energy storage is inevitable and especially pertinent in places with no access to the electricity grid. This combination must be modular, providing the opportunity to scale up the system if energy demand increases, but also easy to install and use ...
Solar Home Systems (SHS) have recently shown an abundant growth in the developing world, which has also largely improved the energy access situation for the un(der)-electrified. Battery storage is the most important component of the SHS, because of both its higher cost and lower ...
Solar road technology provides an opportunity to harvest the vast, albeit dispersed, photovoltaic (PV) energy, while maximizing the land utilization. Deriving experience from the pioneering 70-m solar bike path installed in the Netherlands, this paper highlights the operational c ...
Solar Home Systems (SHS) have recently gained prominence as the most promising solution for increasing energy access in remote, off-grid communities. However, the higher than standard testing conditions (STC) temperatures have a significant impact on the SHS components like Photo ...
The past few years have seen strong growth of solar-based off-grid energy solutions such as Solar Home Systems (SHS) as a means to ameliorate the grave problem of energy poverty. Battery storage is an essential component of SHS. An accurate battery model can play a vital role in ...

Understanding the Present and the Future Electricity Needs

Consequences for Design of Future Solar Home Systems for Off-Grid Rural Electrification

Solar Home Systems (SHSs) can fulfil the basic energy needs of the globally unelectrified population. With costs as one of the biggest barriers for SHS uptake, optimizing the system size with energy needs is crucial. Where most solutions focus only on the present needs, this work ...
The proliferation of Solar Home Systems (SHS) in recent times hopes to provide an alleviating solution to the global problem of energy poverty. Battery is usually the most expensive but important part of an SHS; it is also normally the first part to fail. Estimating the battery l ...
The paper provides a comparison of four PV-battery architectures with dc and ac backbones, in terms of autarky, energy efficiency, battery size and reduction of annual electricity cost. The comparison is conducted based on the residential load and irradiation data from the Nether ...