BD

B. Dam

271 records found

Thin film metal hydride optical sensors, especially those made from tantalum, offer a large, hysteresis-free hydrogen sensing range, fast response times and great stability. However, due to the shift in tantalum’s hydrogen sensing ranges with rising temperatures, tantalum becomes ...
Using in situ scanning transmission electron microscopy (STEM) and low-loss plasmon electron energy-loss spectroscopy (EELS), we reveal asymmetric transformation mechanisms during the hydrogenation and dehydrogenation of Mg thin films. Remarkably, during hydrogenation, the MgH2 p ...
Grasping (electronic) structure changes during photochromic processes is crucial for fully understanding the photochromic effect in rare-earth oxyhydride films. In this study, we employ in situ UV illumination positron annihilation lifetime spectroscopy (PALS) to investigate the ...
Optical hydrogen sensors have the power to reliably detect hydrogen in an inherently safe way, which is crucial to ensure safe operation and prevent emissions of hydrogen as an indirect greenhouse gas. These sensors rely on metal hydride material that can reversibly absorb hydrog ...
In Fig. 4(e) on page 6733 of this article, the legends in the graph for faradaic efficiency of CO and C2+ were misplaced. The original figure should be replaced with an updated one. Note that this correction does not have any impact on the main idea and conclusion of this article ...
Cycling stability of the photochromic effect in rare-earth oxyhydride thin films is of great importance for long-term applications such as smart windows. However, an increasingly slower bleaching rate upon photochromic cycling was found in yttrium oxyhydride thin films; the origi ...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen ...
Rare-Earth oxyhydrides (REH3-2xOx) are characterized by photodarkening when illuminated by photons having an energy exceeding that of the band gap. We propose that the film is segregated in hydrogen rich and hydrogen poor areas. Upon illumination, the excited electrons reduce the ...

Exploring Multi-Anion Chemistry in Yttrium Oxyhydrides

Solid-State NMR Studies and DFT Calculations

Rare earth oxyhydrides REOxH(3-2x), with RE = Y, Sc, or Gd and a cationic FCC lattice, are reversibly photochromic in nature. It is known that structural details and anion (O2-:H-) composition dictate the efficiency of the photochromic ...
Photochromism has been reported for several rare-earth (RE) metal oxyhydride thin films and is characterized by a reversible darkening of the sample when exposed to light with energy greater than its optical bandgap. Here, we extend the range of known photochromic RE-oxyhydrides ...
At ambient conditions, rare-earth oxyhydride thin films show reversible photochromism and photoconductivity, while their mechanism and relation are still unclear. In this work, this question is explored with in situ time-resolved measurements of both optical and transport propert ...
Accurate, cost-efficient, and safe hydrogen sensors will play a key role in the future hydrogen economy. Optical hydrogen sensors based on metal hydrides are attractive owing to their small size and costs and the fact that they are intrinsically safe. These sensors rely on suitab ...
Rare-earth (RE) oxyhydride thin films show a color-neutral, reversible photochromic effect at ambient conditions. The origin of the photochromism is the topic of current investigations. Here, we investigated the lattice defects, electronic structure, and crystal structure of phot ...
Finding alternative ways to tailor the electronic properties of a catalyst to actively and selectively drive reactions of interest has been a growing research topic in the field of electrochemistry. In this Letter, we investigate the tuning of the surface electronic properties of ...
In this paper, we investigate by ab initio DFT how the O:H ratio influences the formation and lattice energy, metastability, and optical properties of Y and La anion-disordered ROxH3-2x oxyhydrides. To achieve this, a set of special quasirandom structures (SQS) is introduced to m ...
To develop an understanding of the photochromic effect in rare-earth metal oxyhydride thin films (REH3-2xOx, here RE = Y), we explore the aliovalent doping of the RE cation. We prepared Ca-doped yttrium oxyhydride thin films ((CazY1-z)HxOy) by reactive magnetron cosputtering with ...

Erratum to

Aliovalent Calcium Doping of Yttrium Oxyhydride Thin Films and Implications for Photochromism (The Journal of Physical Chemistry C (2022) 126:34 (14742−14749) DOI:10.1021/acs.jpcc.2c04456)

The energy axes of the RBS and ERD data (contained in Figures 2a,b,d,e, and S4) were originally underestimated, and the corrected figures appear below and in the Supporting Information. The change is in the conversion from raw data to the energy scale, which was initially convert ...
Phase segregation in hydride-forming alloys may persist under the action of multiple hydrogenation/dehydrogenation cycles. We use this effect to destabilize metal hydrides in the immiscible Mg-Mn system. Here, in the MgxMn1-x thin films, the Mg and Mn domains are chemically segre ...

Tantalum-Palladium

Hysteresis-Free Optical Hydrogen Sensor Over 7 Orders of Magnitude in Pressure with Sub-Second Response

Hydrogen detection in a reliable, fast, and cost-effective manner is a prerequisite for the large-scale implementation of hydrogen in a green economy. Thin film Ta1−yPdy is presented as an effective optical sensing material with extremely wide sensing ranges ...