GC

Authored

18 records found

Fin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effec ...
Resistive RAM (RRAM) is a promising technology to replace traditional technologies such as Flash, because of its low energy consumption, CMOS compatibility, and high density. Many companies are prototyping this technology to validate its potential. Bringing this technology to the ...
Industry is prototyping and commercializing Resistive Random Access Memories (RRAMs). Unfortunately, RRAM devices introduce new defects and faults. Hence, high-quality test solutions are urgently needed. Based on silicon measurements, this paper identifies a new RRAM unique fault ...
The Soft-Error (SE) reliability and the effects of Negative Bias Temperature Instability (NBTI) in deep submicron technologies are characterized as the major critical issues of high-performance integrated circuits. The previous scientific research studies provide a comprehensive ...
Manufacturing defects in FinFET SRAMs can cause hard-to-detect faults such as Random Read Faults (RRFs). Detection of RRFs is not trivial, as they may not lead to incorrect outputs. Undetected RRFs become test escapes, which might lead to no-trouble-found devices and early in-fie ...
Manufacturing defects can cause hard-to-detect (HTD) faults in fin field-effect transistor (FinFET) static random access memories (SRAMs). Detection of these faults, such as random read outputs and out-of-spec parametric deviations, is essential when testing FinFET SRAMs. Undetec ...
Hard-to-detect faults such as weak and random faults in FinFET SRAMs represent an important challenge for manufacturing testing in scaled technologies, as they may lead to test escapes. This paper proposes a Design-for-Testability (DFT) scheme able to detect such faults by monito ...
Manufacturing defects in FinFET SRAMs can cause hard-to-detect faults such as Undefined State Faults (USFs). Detection of USFs is not trivial, as they may not lead to incorrect functionality. Nevertheless, undetected USFs may have a severe impact on the memory's quality: they can ...
STT-MRAM mass production is around the corner as major foundries worldwide invest heavily on its commercialization. To ensure high-quality STT-MRAM products, effective yet cost-efficient test solutions are of great importance. This article presents a systematic device-aware defec ...
The Fin Field-Effect Transistor (FinFET) technology became the most promising approach to enable the downscaling of technological nodes below the 20 nm threshold. However, the introduction of new technology nodes for embedded memories such as SRAMs, especially for even smaller no ...
Manufacturing defects can cause faults in FinFET SRAMs. Of them, easy-to-detect (ETD) faults always cause incorrect behavior, and therefore are easily detected by applying sequences of write and read operations. However, hard-to-detect (HTD) faults may not cause incorrect behavio ...
High-quality memory diagnosis methodologies are critical enablers for scaled memory devices as they reduce time to market and provide valuable information regarding test escapes and customer returns. This paper presents an efficient Hierarchical Memory Diagnosis (HMD) approach th ...
Resistive defects in FinFET SRAMs are an important challenge for manufacturing test in submicron technologies, as they may cause dynamic faults, which are hard to detect and therefore may increase the number of test escapes. This paper presents a defect-oriented test that uses On ...
Emerging non-volatile resistive memories like Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) and Resistive RAM (RRAM) are in the focus of today’s research. They offer promising alternative computing architectures such as computation-in-memory (CiM) to reduce the tr ...
Fin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effec ...
This paper proposes a new test approach that goes beyond cell-aware test, i.e., device-aware test. The approach consists of three steps: defect modeling, fault modeling, and test/DfT development. The defect modeling does not assume that a defect in a device (or a cell) can be mod ...
The STT-MRAM manufacturing process involves not only traditional CMOS process steps, but also the integration of magnetic tunnel junction (MTJ) devices, the data-storing elements. This paper demonstrates a paradigm shift in fault modeling for STT-MRAMs by performing defect modeli ...
The STT-MRAM manufacturing process involves not only traditional CMOS process steps, but also the integration of magnetic tunnel junction (MTJ) devices, the data-storing elements. This paper demonstrates a paradigm shift in fault modeling for STT-MRAMs by performing defect modeli ...