Circular Image

A. Shekhar

79 records found

This study investigates the techno-economic impacts of various pricing policies on a photovoltaic (PV) system combined with battery energy storage (BES) as a single integrated system within a Dutch residential building. With the increasing adoption of PV systems, managing reverse ...
High-power flexible dc links employ modular multilevel converters (MMC) for compact active power redirection in medium and high voltage grids. During contingencies, such converters may need to provide an enhanced active power capacity to avoid overload in vulnerable grid location ...
Silicon-Carbide (SiC) MOSFETs are widely used in high-power and high-efficiency applications such as electric vehicles and power supplies. However, long-term reliability remains a critical concern, particularly under extreme operating conditions. This work aims to explain the hea ...
Properly addressing uncertainties in reliability analysis is essential for realistic lifetime predictions of power devices. This paper investigates parameter uncertainties on the lifetime estimation of power devices using an empirical lifetime model and Monte Carlo simulations. K ...
To tackle the potential grid overloading issue induced by excessive Electric Vehicles (EV) charging demand, a Low Voltage (LV) grid congestion management algorithm with three centralised EV charging management schemes is proposed in this study. The developed algorithm integrates ...
Modular Multilevel Converters (MMCs) offer significant advantages in the medium to high-voltage settings. The modular architecture of MMCs allows for redundant submodules (SMs) to improve overall reliability. These redundant SMs can be deployed using various redundancy strategies ...
Targeting a climate-neutral maritime sector drives the adoption of the all-electric ship (AES). While AESs can utilize both ac and dc shipboard power systems (SPS), a dc system offers advantages in efficiency, power density, and source synchronization. However, the enhanced netwo ...
Identifying faulty lines and their accurate location is key for rapidly restoring distribution systems. This will become a greater challenge as the penetration of power electronics increases, and contingencies are seen across larger areas. This paper proposes a single terminal me ...
In this article, we provide a comprehensive review of defect formation at the atomic level in interfaces and gate oxides, focusing on two primary defect types: interface traps and oxide traps. We summarize the current theoretical models and experimental observations related to th ...
The role of power electronics in advancing electrification and sustainability is pivotal. The Modular Multilevel Converter (MMC) is a leading candidate for connecting offshore wind farms to the power grid. However, one of the primary concerns with MMC is its reliability, primaril ...
The rising demand for electric vehicles (EVs) in the face of limited grid capacity encourages the development and implementation of smart charging (SC) algorithms. Experimental validation plays a pivotal role in advancing this field. This article formulates a hierarchical mixed i ...
Modular multilevel converters are favorable for efficiently operating high-power usages. The required number of components significantly increases when higher modularity is introduced for the given voltage level, thus reducing the system's reliability. This article suggests a mix ...
This article discusses the various ways in which the stresses experienced by the IGBTs and diodes in a Dual Active Bridge (DAB) are asymmetric. This asymmetry can be between the two bridges or between IGBTs and diodes on both bridges. The terminal voltage, transformer ratio and t ...
In DC shipboard power systems (DC-SPS), the enhanced network complexity and high penetration of power electronic devices make the system level reliability a critical design aspect. This paper proposes a stochastic framework for the reliability assessment of DC-SPSs based on a thr ...
In the realm of electric mobility, fast chargers for electric vehicles (EVs) play a critical role in mitigating range anxiety while driving. The converter in these chargers usually has a load profile consisting of a high-current pulse to swiftly recharge the EV battery, followed ...
Due to the deficient passivation of the interface between silicon carbide and silicon dioxide, the defect-induced capture and release of trapped charges triggered by external Bias Temperature Stress (BTS) leads to parameter shifts and degraded device performance. This study model ...

Reliability Assessment of Modular Multilevel Converters

A Comparative Study of MIL and Mission Profile Methods

Power electronics converters are essential for power generation, transmission, and distribution. The modular multilevel converter (MMC) is highly valued for its versatility, high efficiency, and robust control capabilities. Since MMC is composed of many components, its reliabilit ...
The Dual Active Bridge (DAB) is a popular DC-DC converter for bidirectional power transfer in applications such as the re-emerging technology of flow batteries. For such applications, it is essential to design the DAB for the wide voltage range operation of batteries, specificall ...
Electrolysis requires a high DC current at low voltage to produce hydrogen from water. Designing power converters for such a load requirement could be challenging while fulfilling the galvanic isolation needs. Therefore, prior knowledge of the electrolyzer's impact on the convert ...
EV fast chargers are essential in addressing the concern of limited driving range for E-mobility applications. However, the load profile of a converter for fast charging involves a high-current pulse that can last for a few minutes to efficiently replenish the EV battery, which i ...