MR

Maximilian Ruf

9 records found

Authored

Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent mul ...

The nitrogen-vacancy (N-V) center in diamond has been established as a prime building block for quantum networks. However, scaling beyond a few network nodes is currently limited by low spin-photon entanglement rates, resulting from the N-V center's low probability of coherent ...

With their ability to process and transfer quantum information, large-scale entanglement-based quantum networks could be at the heart of a new age of quantum information, enabling fundamentally new applications such as distributed quantum computation, quantum communication, and q ...

With the ability to transfer and process quantum information, large-scale quantum networks will enable a suite of fundamentally new applications, from quantum communications to distributed sensing, metrology, and computing. This Perspective reviews requirements for quantum net ...

Near-term quantum-repeater experiments with nitrogen-vacancy centers

Overcoming the limitations of direct transmission

Quantum channels enable the implementation of communication tasks inaccessible to their classical counterparts. The most famous example is the distribution of secret key. However, in the absence of quantum repeaters, the rate at which these tasks can be performed is dictated b ...

Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report o ...

The advancement of quantum optical science and technology with solid-state emitters such as nitrogen-vacancy (NV) centers in diamond critically relies on the coherence of the emitters' optical transitions. A widely employed strategy to create NV centers at precisely controlled ...

Defect centres in diamond are promising building blocks for quantum networks thanks to a long-lived spin state and bright spin-photon interface. However, their low fraction of emission into a desired optical mode limits the entangling success probability. The key to overcoming ...