## H.G.J. Eenink

9 records found

1

## Authored

We demonstrate a 36 × 36 gate electrode crossbar that supports 648 narrow-channel field effect transistors (FET) for gate-defined quantum dots, with a quadratic increase in quantum dot count upon a linear increase in control lines. The crossbar is fabricated on an industrial < ...

Spin qubits in quantum dots define an attractive platform for quantum information because of their compatibility with semiconductor manufacturing, their long coherence times, and the ability to operate above one Kelvin. However, despite demonstrations of SWAP oscillations, the ...

Electrons and holes confined in quantum dots define excellent building blocks for quantum emergence, simulation, and computation. Silicon and germanium are compatible with standard semiconductor manufacturing and contain stable isotopes with zero nuclear spin, thereby serving ...

Quantum computing's value proposition of an exponential speedup in computing power for certain applications has propelled a vast array of research across the globe. While several different physical implementations of de ...

Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing chall ...

We investigate the structural and quantum transport properties of isotopically enriched Si28/SiO228 stacks deposited on 300-mm Si wafers in an industrial CMOS fab. Highly uniform films are obtained with an isotopic purity greater than 99.92%. Hall-bar transistors with an oxide ...

We investigate the magnetic field and temperature dependence of the single-electron spin lifetime in silicon quantum dots and find a lifetime of 2.8 ms at a temperature of 1.1 K. We develop a model based on spin-valley mixing and find that Johnson noise and two-phonon processe ...

Recent advances in quantum error correction codes for fault-Tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classica ...