Circular Image

W.A. Serdijn

333 records found

Bioelectronic medicine

Wearable and implantable electronics

This special collection explores the rapidly evolving field of wearable and implantable electronic devices. These integrated microsystems leverage state-of-the-art technologies in electrical, magnetic, optical, and ultrasound neuromodulation and recording to interact with biologi ...
Optical wireless power transfer (OWPT) has emerged as a promising technology for efficient wireless power transfer (WPT), offering advantages, such as directionality, suitability for far-field applications, and the ability to transfer power and data simultaneously. This comprehen ...

On the longevity and inherent hermeticity of silicon-ICs

Evaluation of bare-die and PDMS-coated ICs after accelerated aging and implantation studies

Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body e ...
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month ...

Author Correction

On the longevity and inherent hermeticity of silicon-ICs: evaluation of bare-die and PDMS-coated ICs after accelerated aging and implantation studies (Nature Communications, (2025), 16, 1, (12), 10.1038/s41467-024-55298-4)

Correction to: Nature Communicationshttps://doi.org/10.1038/s41467-024-55298-4, published online 02 January 2025 In this article the following sentence was omitted from the acknowledgements section, ‘This research was funded by the following projects: Project CANDO (Controlling N ...
State-of-the-art intracortical neural recording and stimulation systems rely on subdural implants tethered to a cranial implant which itself has a wireless power and data link to the outside world [1] (Fig. 6.2.1). However, this tethered configuration poses challenges such as sca ...

NeuroDots

From Single-Target to Brain-Network Modulation: Why and What Is Needed?

Objectives: Current techniques in brain stimulation are still largely based on a phrenologic approach that a single brain target can treat a brain disorder. Nevertheless, meta-analyses of brain implants indicate an overall success rate of 50% improvement in 50% of patients, irres ...
In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP pr ...
Recording neuronal activity triggered by electrical impulses is a powerful tool in neuroscience research and neural engineering. It is often applied in acute electrophysiological experimental settings to record compound nerve action potentials. However, the elicited neural respon ...
Electrical stimulation is proven to be an effective way of neuromodulation in bioelectronic medicine (e.g. cochlear implants, deep brain stimulators, etc.), delivering localized treatment by the means of electrical pulses. To increase the stimulation efficiency and neural-type se ...
Developing neuroprosthetic bioelectronic devices requires wirelessly-powered implantable stimulator systems with hundreds to thousands of output channels. Power efficiency optimization is crucial for scaling up the number of output channels. Current-mode electrical stimulation is ...
This paper presents a new communication method between micro-scale freely floating brain implants based on galvanic coupling (GC), called "Brain-Coupled Communication" (BCC). Since the transmission efficiency based on GC is highly dependent on the system’s geometry and the electr ...
The key challenges in designing a multi-channel biosignal acquisition system for an ambulatory or invasive medical application with a high channel count are reducing the power consumption, area consumption and the outgoing wire count. This article proposes a spread-spectrum modul ...
This paper presents a novel multi-channel stimulation backend with a multi-bit delta-sigma control loop, which enables precise adjustment of the stimulation current through modulation of the supply voltage. This minimizes the overhead voltage of series circuitry to the stimulatio ...
In an attempt to reduce the side effects caused by the chemically-based drugs used to treat neurological disorders, the field of bioelectronics has been focusing on the development of smart and reliable solutions that could, ideally, interact with the tissue at a resolution of in ...
During the last few decades, electrical neural stimulators have successfully been employed as a means of treatment for a wide range of neurological disorders. By targeting the peripheral and central nervous systems, electrical neurostimulators activate/inhibit neural activity by ...
This work proposes a guideline for designing more energy-efficient electrical stimulators by analyzing the frequency spectrum of the stimuli. It is shown that the natural low-pass characteristic of the neuron’s membrane limits the energy transfer efficiency from the stimulator to ...
A Medical Body Area Network (MBAN) is an ensemble of collaborating, potentially heterogeneous, medical devices located inside, on the surface of or around the human body with the objective of tackling one or multiple medical conditions of the MBAN host. These devices-which are a ...
Power efficiency in electrical stimulator circuits is crucial for developing large-scale multichannel applications like bidirectional brain-computer interfaces and neuroprosthetic devices. Many state-of-the-art papers have suggested that some non-rectangular pulse shapes are more ...
In multi-electrode arrays (MEAs), for electrical recording and electrical stimulation, high voltage (HV) switches are employed to build an analog multiplexer to conduct either a HV stimulation signal from the pulse generator circuit to an electrode or a low-voltage noise-sensitiv ...