DH
D. Hu
24 records found
1
The mechanical strength of sintered nanoparticles (NPs) limits their application in advanced electronics packaging. In this study, we explore the anisotropy in the microstructure and mechanical properties of sintered copper (Cu) NPs by combining experimental techniques with molec
...
Insights into sulfur and hydrogen sulfide induced corrosion of sintered nanocopper paste
A combined experimental and ab initio study
The power semiconductor joining technology through sintering of copper nanoparticles is well-suited for die attachment in wide bandgap (WBG) semiconductors, offering high electrical, thermal, and mechanical performances. However, sintered nanocopper will be prone to degradation r
...
To fulfill the high-temperature application requirement of high-power electronics packaging, Cu nanoparticle sintering technology, with benefits in low-temperature processing and high-melting point, has attracted considerable attention as a promising candidate for the die-attach
...
Nano-metal materials have received considerable attention because of their promising performance in wide bandgap semiconductor packaging. In this study, molecular dynamics (MD) simulation was performed to simulate the nano-Cu sintering mechanism and the subsequent mechanical beha
...
IN advancing the ’More thanMoore’ paradigm, heterogeneous integration has emerged to facilitate the creation of highly efficient, compact, and multi-functional semiconductor systems. Addressing the challenges related to power efficiency, superior performance, and integration dens
...
Driven by the increasing demand for high-power systems, ceramic substrates have received more attention for handling higher power density. Warpage in active metal brazed (AMB) ceramic substrate becomes a critical issue as it can deteriorate the reliability performance. This study
...
Sintered nanocopper (nanoCu) paste, exhibiting excellent electrical, thermal, and mechanical performances, offers promise for interconnections in wide bandgap (WBG) semiconductors operating at higher temperatures. However, sintered nanoCu is prone to severe corrosion in environme
...
During operation in environments containing hydrogen sulfide (H2S), such as in offshore and coastal environments, sintered nanoCu in power electronics is susceptible to degradation caused by corrosion. In this study, experimental and molecular dynamics (MD) simulation
...
Corrigendum to “Insights into the high-sulphur aging of sintered silver nanoparticles
An experimental and ReaxFF study” [Corros. Sci. 192 (2021) 109846] (Corrosion Science (2021) 192, (S0010938X21006120), (10.1016/j.corsci.2021.109846))
The authors regret that in the above article the Fig. 3 contains an error of cross-section image of group C at 48 h on Page 4. Fig. 3 should read: This correction does not influence the method, results and conclusions of the original article. The authors would like to apologise f
...
The nano-copper particles are widely used in the sintering processes of packaging wide bandgap semiconductors. Despite the significant success in the industry, the mechanism bridging the sintering process to the mechanical properties of sintered nano-copper is not yet well-modele
...
The rapid development of power electronics has challenged the thermal integrity of semiconductor packaging. Further developments in this domain can be supported significantly by utilizing fast and flexible thermal characteristic evaluation. This study employs the transient dual i
...
High temperature viscoplastic deformation behavior of sintered nanocopper paste used in power electronics packaging
Insights from constitutive and multi-scale modelling
As a promising technology for high-power and high-temperature power electronics packaging, nanocopper (nanoCu) paste sintering has recently received increasing attention as a die-attachment. The high-temperature deformation of sintered nanoCu paste and its underlying mechanisms c
...
Nano-metal materials sintering has received increasing attention in recent years for its promising performance in the wide bandgap semiconductor packaging. In this paper, molecular dynamics (MD) simulation method were applied to simulate the nano-Cu sintering mechanism and the su
...
As a critical part of speeding up industrial electrification, power electronics, and its packaging technology are undergoing rapid development. Cu nanoparticle sintering technology has therefore received extensive attention for its excellent performance in the die-attachment laye
...
The application of microporous sintered copper (Cu) as a bonding material to replace conventional die-attach materials in power electronic devices has attracted considerable interest. Many previous studies have focused on the effect of processing parameters (temperature, time, pr
...
Driving by the increased demand for hermetic packaging in the more than Moore (MtM) roadmap, a Cu nanoparticle sintering-enabled hermetic sealing solution was developed with a small-size sealing ring. The developed technology simplifies microfabrication and requires less surface
...
Effects of temperature and grain size on diffusivity of aluminium
Electromigration experiment and molecular dynamic simulation
Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperatu
...
Nano-copper sintering is one of new die-attachment and interconnection solutions to realize the wide bandgap semiconductor power electronics packaging with benefits on high temperature, low inductance, low thermal resistance and low cost. Aiming to assess the high-temperature rel
...
Advances in semiconductor device manufacturing technologies are enabled by the development and application of novel materials. Especially one class of materials, nanoporous films, became building blocks for a broad range of applications, such as gas sensors and interconnects. The
...
To meet the requirements of low temperature packaging and high temperature operation for wide bandgap semiconductors, the traditional reflow soldering is gradually substituted by the metallic nanoparticle sintering interconnection. However, the high sintering densification is one
...